a2 United States Patent

Anderson

US009258014B2

US 9,258,014 B2
*Feb. 9, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)
(72)
(73)

")

@
(22)
(65)

(63)

(1)

(52)

(58)

USING PARITY DATA FOR CONCURRENT
DATA AUTHENTICATION, CORRECTION,
COMPRESSION, AND ENCRYPTION

Applicant: STREAMSCALE, INC., Los Angeles,

CA (US)

Inventor: Michael H. Anderson, Los Angeles, CA
us)

Assignee: STREAMSCALE, INC., Los Angeles,
CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/543,641

Filed: Nov. 17, 2014
Prior Publication Data
US 2015/0207522 Al Jul. 23, 2015

Related U.S. Application Data

Continuation of application No. 13/727,581, filed on
Dec. 26, 2012, now Pat. No. 8,914,706, which is a
continuation-in-part of application No. 13/341,833,
filed on Dec. 30, 2011, now Pat. No. 8,683,296.

Int. CI.

HO3M 13/00 (2006.01)

HO3M 13/37 (2006.01)
(Continued)

U.S. CL

CPC HO3M 13/11 (2013.01); GO6F 11/1076

(2013.01); GOGF 11/1096 (2013.01);

(Continued)

Field of Classification Search

CPC HO3M 13/373; HO3M 13/616; HO3M

13/3761; HO3M 13/3776; HO3M 13/1191;
HO3M 13/134; HO3M 13/151; HO3M 13/6569;
GOGF 11/1076; GOG6F 11/1092; GOG6F 11/1096;

100

GOG6F 12/0238; GOGF 12/06; GOGF 2211/1057,
GOG6F 2211/109; GOGF 2212/7202; GO6F
2212/7208; HO4L 1/0043; HO4L 1/0057
USPCcceeeee 714/6.24,6.1,6.11,6.2, 6.21, 6.32,
714/763,752, 758, 768, 770, 773, 784, 786

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,654,924 B1* 11/2003 Hassneretal. 714/758
6,823,425 B2* 11/2004 Ghoshetal. 711/114

(Continued)
OTHER PUBLICATIONS

Hafner et al., Matrix Methods for Lost Data Reconstruction in Era-
sure Codes, Nov. 16, 2005, USENIX FAST ’05 Paper, pp. 183-196.*

(Continued)

Primary Examiner — John J Tabone, Ir.

(74) Attorney, Agent, or Firm — Christie, Parker & Hale,
LLP

(57) ABSTRACT

A system for software error-correcting code (ECC) protec-
tion or compression of original data using ECC data in a first
memory is provided. The system includes a processing core
for executing computer instructions and accessing data from
a main memory, and a non-volatile storage medium for stor-
ing the computer instructions. The software ECC protection
or compression includes: a data matrix for holding the origi-
nal data in the first memory; a check matrix for holding the
ECC data in the first memory; an encoding matrix for holding
first factors in the main memory, the first factors being for
encoding the original data into the ECC data; and a thread for
executing on the processing core. The thread includes a
Galois Field multiplier for multiplying entries of the data
matrix by an entry of the encoding matrix, and a sequencer for
ordering operations using the Galois Field multiplier to gen-
erate the ECC data.

16 Claims, 21 Drawing Sheets

~
120
CPU CPU CPU CPU
+ L1 +L1 + L1 + L1
P 1 1 1
130 130
Die 0 L2 Memory L2 Die 1
P I 1
CPU CPU CPU CPU
+L1 + L1 + L1 + L1
150

US 9,258,014 B2
Page 2

(51) Int.CL
HO3M 13/13 (2006.01)
HO4L 1/00 (2006.01)
GOGF 11/10 (2006.01)
GOGF 12/02 (2006.01)
GOGF 12/06 (2006.01)
HO3M 13/11 (2006.01)
HO3M 13/15 (2006.01)
(52) US.CL
CPC ... GO6F12/0238 (2013.01); GOGF 12/06

(2013.01); HO3M 13/1191 (2013.01); HO3M
137134 (2013.01); HO3M 13/1515 (2013.01);
HO3M 13/373 (2013.01); HO3M 13/3761
(2013.01); HO3M 13/3776 (2013.01); HO3M
13/616 (2013.01); HO4L 1/0043 (2013.01);
GOGF 11/1092 (2013.01); GO6F 2211/109
(2013.01); GO6F 2211/1057 (2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS

7,350,126 B2 *
7,930,337 B2

3/2008 Winograd etal. 714/752
4/2011 Hasenplaugh et al.

8,145941 B2* 3/2012 Jacobson 714/6.24

8,352,847 B2* 1/2013 Gunnam 714/801
8,683,296 B2* 3/2014 Anderson et al. 714/763
2011/0029756 Al* 2/2011 Biscondietal. ... 712/22
2012/0272036 Al* 10/2012 Muralimanohar etal. ... 711/202

2013/0108048 Al* 5/2013 Grubeetal. 380/270
2013/0110962 Al* 5/2013 Grubeetal. 709/213
2013/0111552 Al* 5/2013 Grube et al.
2013/0124932 Al* 5/2013 Schuh et al.
2013/0173956 Al* 7/2013 Anderson
2013/0173996 Al* 7/2013 Anderson et al.

OTHER PUBLICATIONS

.. 726/3
714/718

. 714/6.24
............. 714/770

Anvin; The mathematics of RAID-6; First Version Jan. 20, 2004; Last
Updated Dec. 20, 2011; pp. 1-9.

Maddock, et al.; White Paper, Surviving Two Disk Failures Introduc-
ing Various “RAID 6” Implementations; Xyratex; pp. 1-13.

Plank; All About Erasure Codes:—Reed-Solomon Coding—I.DPC
Coding; Logistical Computing and Internetworking Laboratory,
Department of Computer Science, University of Tennessee; ICL—
Aug. 20, 2004; 52 sheets.

Li et al.; Preventing Silent Data Corruptions from Propagating Dur-
ing Data Reconstruction; IEEE Transactions on Computers, vol. 59,
No. 12, Dec. 2010; pp. 1611-1624.

* cited by examiner

US 9,258,014 B2

Sheet 1 of 21

Feb. 9, 2016

U.S. Patent

\m

N\

7 81Ag ‘N Ho3yo

Z A ‘W oyd

| 81AQ ‘W Yo8yo

7 8¥4q ‘g Mo8yo

Z 9JAQ ‘Z Yo9yo

| 91Aq ‘Z 3080

7 9)4d ‘| Yoy

Z ©1Aq ‘| yosyo

| ©JAq ‘} 3o9yd

0¢

791Ag ‘N Blep

Z 91AQ ‘N elep

| 91Ag ‘N Bjep

1 91Aq ‘¢ ejep

¢ 9JAq ‘Z eyep

| 81Aq ‘Z elep

7 91Aq ‘| eyep

2 91Ag ‘| exep

| 91Aq ‘) ejep

L Old

/m

/

US 9,258,014 B2

Sheet 2 of 21

Feb. 9, 2016

U.S. Patent

A BIEp 1S0| pajonisuooal pue X elep Buiaiains woly ejep ¥o8yo iso| Aue
ajesouabal ‘einwioy Buisn |_g xujew uoiRn|os pue ‘y xujew Buipoous
‘A B1ep Y28yd BUIAIAINS ‘X elep BUIAIANS WOl A Blep 1SO| 1oNJ1suooay

— 0G¢€

(XxV — M) x -8 = A 0S ‘Axg + XxV = M diysuofjejal ey} seysiies
A EIBP ISO| {,_g Xujew uonn|jos aonpold 0} g Xujew Bulpoous UaAu|

— Ove

F 3

Wb Jamo] ul (4x4) g Xuiew Buipoous pue ‘Ys| Jamoj Ul (Mx-)
v Xujew Buiposus ‘ybu Jaddn ul (4xM) O Xuiew olaz ‘Ya| 1addn ul
(Mx¥) | xupew Alluspl :seoulewW-gNsS INoY OJUl | Xujew Buipoous yidg

— 0¢e

b

LUOJI0g UO AA BIEP Moayo BulAlAIns pue doj uo X elep BuiAinIng Buiaeg| ‘smol
Blep 3oayo Bulainns 4 Ajuo Buidasy ajiym smod elep 1so| 4 ayl Buirowal Ag
,0 Xuiew Buipooud azis paonpal 0} O XLJew Blep papoousd 9zIs ||n} sonpay

— 0¢t

L

WBLI 8y} 0] SULLN|OD SALIP BIEpP pPajie) 4 8l BUIAOW ‘SMOJ SALIP Yo9yD

1 xupew Buipoous azis paonpal 0} J Xujew Buipoous azIs ||n) 8onpay

Buininins 4 Ajuo Buidesy ajiym smos sAUp elep pajie) 4 sy} Buinowsas Aq — ¢

¢ 9ld

/
00¢

US 9,258,014 B2

Sheet 3 of 21

Feb. 9, 2016

U.S. Patent

slaisibal 1ndino ayj ul syonpoud ajqaiu Japio-ybiy pue ajqgiu Jsplo
-mo| Buipuodsailod ay] Buiejnwinooe ‘sis)sibal yojelos ayj ul ejep

9|qgiu 8y} uo g4NHSd @sn — (ejep jo sajhq gg J1ad souo) Aldiyni

— 0Gv

F §

(sajqaiu) eyep yoieios Jo siaisiBal 1noj olul (s8}Aq) ejep puesado
jo s19)siBas om] anow — (ejep Jo $9JAQ z¢ Jad 8ouo) ajnoaxy

— Ovv

F 3

sJgjsibal indino Inoy Jes)o lis)sibal Jayioue ojul sjonpold sjqagiu 18pJo
-MO| 3} Jo} Jeada. ua)siBal suo ojul I01oR) JUBLIND 8y} 10} Alowawl Woly
s1onpoud ajqqiu Japlo-ybiy ajqissod g1 ay) peol — (||ed Jed aduo) sjnosexy]

— 0tY

h

s||eo Buipaasons uo Alowaws wody Buipeolal pioAe 0} auoje siajsibal asay}
9ARY| |jIm Jaldynw dnyoo) |9|jeled ay} ‘sisisibal puelado inoy ojul Alowsw
WwoJ} ejep pueiado Jo sa1Aq 9 IXau peo| — (elep puelado Jad aouo) atedaid

— 0c¥

b

J0}oB} 8UO pue 8|ggiu suo Jo sjonpold sjqissod 9| ay} Jo saLjus
9G¢ Buluiejuod auo yoes ‘ss|qqiu Jsplo-ybiy Joj suo ‘ss|qqiu
18pJ0-MoO} 4O} BUO ‘sajge} dnyoo| om] pling — (8w auo) azieniu|

— O0ly

¢ Old

0]0)7

US 9,258,014 B2

Sheet 4 of 21

Feb. 9, 2016

U.S. Patent

BlED YO8UD aAlp Yosyo Alued-uou ay) ayepdn 0} ejep pueltado Jo $8jAQ
9 S, 8AlIP XU uo Jaljdiyinw dnyooj |9jjeted Buljes ‘saaup 3osyo Ajued
-uou ay} Jo yoeas ybnouy) doo| :ALIP elep 1xau ssadold — dooj Jauu|

— 0GSG

doo| Jauul |jed pue ‘ejep %09yo aALp Ajled o] siy} ppe ‘(doo| Jsuul ssoloe
paniasa.id) Alowaw woy ejep puelado Jo saJAQ #9 XU PEO| ‘SSALIP BlEpD
JBYI0 9y} JO YOBD 0} :SSALIP Blep Jaylo ssaoold — dooj a|ppil puodag

— OFG

A

BlEp YOoayd aAlup Yoayd Ajued-uou azijeiul 0} elep puelado Jo $8}Aq #9
S 9ALIP Blep 1Sl uo Jaldiinw dnyoo| |9|jeted Buljed ‘saaup 308y Ajued
-Uou ay} Jo yoes ybnouyl doo| :aALIp elep 1Sl $sa204d — dooj gjppiw 1844

— 0€S

F

B1ep ¥08yo aAlp 3osyo Aed azieniul pue Alowawl WOl AP Blep 1S4l
Jo} ejep puelado Jo S3JAQ 9 1XBU peo| ‘adLis 3y} JO SHO0|q 3yl JO Yyoea
woJ} ejep puelsado Jo syunyd 8JAg-+9 jo dnoub xeu sseoosd — dooj 1sInp

— 029

F 3

ejep jo adu)s e ssoioe sHunyd 93Ag-19 Buipuodsalloo Jo sdnoub
SAIINDASUOD 10} BlEp X280 alesausb 0} alsedaid — uoneooau|

— 01§

¥ Old

00G

US 9,258,014 B2

Sheet 5 of 21

Feb. 9, 2016

U.S. Patent

ﬁ

Blep puelado Jo salAq 9 S,0ALP elep BUulAIAING 1Sl BY) U0 paseq ejep
3oayo 18y} azijeniul o] Jaidinw dnyooj |ajjeled jjed ‘seAlp Moayd pa|lel
8y} JO UYoes 10} :elep aALIp ¥oayd pajie) azieniul — dooj sjppiu puodeg

— 09

H

X xV BlEp ¥0ayo |eied azijeniul o} ejep pueiado Jo $81AQ 9 S.9ALID BlEep
BuiAIAINg 1841} uo Jaldinw dnyoof |ajeled Buijjes ‘saALp ¥o8yd BUIAIAINS By}
10 yoea ybnouy) dooj :aALp elep BulAIAINS sl ssao0id — doof s|ppiwi 1sd14

— 0€9

A

Aowaw wolty SALIp ejep BUIAIAINS }SJl) 10} ejep puelado Jo $8JAQ #9 Ixau
peoj ‘elep puelado Jo s)yunyd a}Ag-9 o dnoib xau ssaooud — dooj JsinQ

— 029

A

ejep jo aduis e ssoloe sUNYD 8)Ag-49 ajdiynul 1o} B1ep ¥98Ud 1SO|

ojesousbas pue ejep [eulbuo 1so| onIsuooal 0} atedaid — uonesoaul [049

G Old

\
009

US 9,258,014 B2

Sheet 6 of 21

Feb. 9, 2016

U.S. Patent

1

XxV Elep 308yo [elued 0} ejep jo sa}Aq 9 JIoy) ppe o} Jappe
|ajjeted Buljjeo ‘sanlp Yoayo Buinians oy} Jo yoes ybnouyy dooj
XxY — M @onpoJd 0} Bjep 3osyo bulaains ppe — dooj sjppiw yuno4

— 089

elep pueiado Jo $a1AQ 9 S,2ALIP Blep BUIAIAINS 1Xau 8y} uo paseq ejep
Moayo Jisy} ajepdn o} Jandinw dnyoo| |ajjesed |jed ‘saAlp ¥oayo pajle;
Sy] JO Yoea I0} Blep SALIP 3oayo pa|ie} alepdn — dooj Jjauul puoossg

— 049

A

X xVY Blep ¥oayo |eiued syepdn o} ejep puesado jo salAg 9 SBALP elep
BulAIAINS JXau uo Jal|dijinw dnyjoo) |ejjeded Buljjed ‘saALIp ¥08Yyo BUlAIAINS By}
jo yoes ybnouyj dooj :aAlIp eyep BUulAiAIns Ixau ssaoold — dooy Jauul is1i4

— 099

ﬂ

(sdooj Jsuul ssouoe paalasald) Alowaw woll elep puelado
jo s8)JAQ #9 IXBU peo| ‘saAlIp elep BUIAIAINS 810 8y} Jo Yyoed
1o} :saAlp elep BUIAIAINS JaY10 $$820.4d — doo| a|ppiw paiy |

— 099

H

9 Ol

009

US 9,258,014 B2

Sheet 7 of 21

Feb. 9, 2016

U.S. Patent

(pasisap Ji) elep 3oayo pajesousb Aimau aiols
‘OALIP X080 pajie} yoes Joj — doo| s|ppItl YixXIS

— 0Z.

3

E]ED 1S0| PaJONJISU0Jal JO SBJAQ 19 S,9ALIP BIEp Pajie) JXau 8y} Uo paseq
Blep Yooyo Jiay] alepdn o} Jaidiynw dnyooj [ajjeled [|eD ‘SOAUP 3o8yo
pa|le) 8y} JO Yoea 1o} :Blep SALP 0ayo pa|ie} alepdn — doo| Jsuui Yuno4

—O0L.

!

(paJisep JI) palols g ued ydiym ‘ejep H_wo_ S OALIP P3)IB} IX8U SJonJisuoosl
siy (Jardiynw dnyoo) |ojjesed Buisn) Xxy — A pue ;g Jo 10joe}
1XaU Jo 19npoud ul Buippe Ag A JO mol 1xau 9)8jdwod — doof Jsuul Iy L

— 004

H

XxV — M BIEpP 323yo |eited }so| pue |_g Xujew uonnjos Jo uoljeuiquiod
1S11} 01 A JO Mol xau Buizieniul Ag Jess (Xxy - M) x -9 91e|nojed ‘doo)
Jauul Py} Yjim uoleuiquiod Ul A elep Jeulblio jso} — dooj s|ppiw Y4

— 069

ﬂ

VAROIE

009

US 9,258,014 B2

Sheet 8 of 21

Feb. 9, 2016

U.S. Patent

0<1
T O/l
17+ 17+ L7 + 17+
Ndo NdD NdD NdD
| I
Leia | z1 » Aowsy |- > Z1 | 0@
Om_.rw\ F N OM.?F
17+ 17 + \ 17 + 17+
NdD NdD ovl Ndo NdD
/ \ // / ’
0oLl 02l
N
8 'Ol 00}

U.S. Patent Feb. 9, 2016 Sheet 9 of 21 US 9,258,014 B2

FIG. 9

220

210
210
210

US 9,258,014 B2

Sheet 10 of 21

Feb. 9, 2016

U.S. Patent

0l Ol

000l

y

F 3

h 4

walsAsgng abeiolg ~_ 0z0l

9yoe)D divy R

AysiessiH Alowsy pue Ndo

US 9,258,014 B2

Sheet 11 of 21

Feb. 9, 2016

U.S. Patent

PO[APIYI T | POIGHIBYI KT | AI0[q BIRP p,E | OOI] BIEP puZ | 001G BIEP 35T ¥ odis
A20[qHBYI puZ | H01G AIBYD T | 34001G BIEP pE | DPOIGBIEP T | 400I] BIEP T ¢ aduls
B0IGNIBYI puz | A0 3D 5T | HI0IG BIBP pE | 30| BIEP puZ | HO0IG EIEP 55T z odujs
220[q %3942 pud 320[(I3Y3 ;T A20|q e1ep g 33019 B1ep pu H30|q BIEP T —\ ma_.h—.w
G SIp ¥ 3SIp Y ¢ ASIp | MSIp
0c0l

Ll Old

US 9,258,014 B2

Sheet 12 of 21

Feb. 9, 2016

U.S. Patent

oomr.\\\\\\

JUS)SISU0D BIe
soJAq |eulbLIO

Jua]sIsuodul sie

JusIadIa

salAq |euibuQ /
1 04¢)

s2jAqg [eulbluo Yyim sajAg

A

JU2]SISUOD ale

aweg

pajelauaboal siedwon

J(oﬁw

h

sa]Aq pelosjes N woll sajAg

[euiBuo | + N [[e ajessusbay [\ vzl

3

so1Aq jeuibuo N Aue 109j98

3

(I <) ON

s9JAQ |eulbLO

occl t\\\\\

¢l Ol

SOA

¢O0=WN_ gz

00¢lL

US 9,258,014 B2

Sheet 13 of 21

Feb. 9, 2016

U.S. Patent

pa)09l8p SI0lId
O - N ueyl

~

Josgns jusisisuod Buish
sious 9 0} dnjoauod | o pog

SUO puNoO

salAg D ~ Al + N 9zIs jo

aJ0W Jou Inqg
‘Pa)oSap SI0LD
0G€<l O ueyj aioN

ozel] P9)031ap SIOLS ON

puUNoj SUON

19SQNS JUSISISUOD B PUld | _ gpe|

h

O — A sJ0Jlo 3|geloalep

JO PUE 3 SIOLIS B|QEJOBLI0D JO I~
laguwinu wnwixew e ud apiosd OEEl

r

ON

F 3

£IUa)sisuoo sajAq A + N ([8uy Y

SOA

US 9,258,014 B2

Sheet 14 of 21

Feb. 9, 2016

U.S. Patent

PajosleP

0% \L Slol® D

Buisn sioua D 1981109 | N\ ooyl

19SgNS JUSISISU0D

9U0 Ueyl ajow puno4

auo puno4

solfg O - A + N JO
$19SQNS JUSISISUOD PULY |\ gpp)

pP]08)ap SIoLD
0ShL /| D ueyyaiopn

paloalap siolla ON

[}

4

o

- ocvl

|

ON

- ozvl
vl Ol

Zjusisisuod salkg N + N
SOA Ife aly 0 =0 YUM LE]IS

/ OL¥l

oovl

US 9,258,014 B2

Sheet 15 of 21

Feb. 9, 2016

U.S. Patent

1+0=018S
0/SL — | "po108lep SI0JId | + 9

pUNo} SUON

Buisn s1oi12 D 1081100 | = ggg|

}Jesqgns 1u=2]1SIsSuUuod

SuUo puno-

saifd D - N + N Jo

Suo uey) QOEE SJOSgNS JUBJSISUOD PUld | N\ gyo

pa]09)ap SI04ID
0G51 S| Osouwy

/

l -0

0

- 0g51

ON

[

0=018S

Z1US)SISU0D SaJAQ N + N
'PO109}ep SIOLB ON | sap | B8l ‘A = O UM Lels

Sl 'Ol - ozl

/ oLSL

00G1

US 9,258,014 B2

Sheet 16 of 21

Feb. 9, 2016

U.S. Patent

'3 03 "9 uod

Qg paeosip pue

pue g 0} '3 Jeg F o1 "o uod [ggol
ON SSA
/S 90UElSIp ploysaiyl s Hq
pue '3 usamiaqg souejsip BulwweH s| | _ gpg)
.Cmn...nNm.rm mCOEm EO.C. _‘+ED
0} '3 15850/0 AU BUIWIRIRA |\ geg,
A
19 soso mau sinduwod “ejep mou oq U 1eT [~
0291

91 "©Old

4

1

.:m P “Nm__‘m 0] @C_”—C_OQ

"3 gt g ejep se pauois Bureq Mooty
¥oayo pue “a‘ "ttt eyep yum uels

US 9,258,014 B2

Sheet 17 of 21

Feb. 9, 2016

U.S. Patent

'3 0 79 juiod
pue "*q oy g 389

ON

A preosip pue
30 o od | oy

SOA

‘++4Qq ejep sio)sal 0] PB]08II0D OIS 8(UBD
19 yosyo pue '3 ejep jey) yons g Jo
| — IN @oue)sip BuiwwieH ulypm "33t
Buowe '3 Aue si alay] JI suisle(

O\ ogsL

f

1

T,

D 98yd mau ajndwon "elep mau ag Hqg 1o ~_
02l

1l "Old

.Cm..Nmnwm Ou. mC;C—OQ Eon...nmo_vo V_OQF—O Ucm
Cmn....Nm__\m mwmb se bm.ho“.m mc_mg EO“..LNO.PO

yosyo pue “q'tqtqg elep yum Hels

US 9,258,014 B2

Sheet 18 of 21

Feb. 9, 2016

U.S. Patent

Qg paeosip

3 0 9 Juiod
pue g o1 "*'3308 |\ y/g,

ON |
1A e1ep 210)S8) 0] PB}OSII0D JOIIB 8F UBD
45 sosyo pue 'q erep ey yons Mg yo

pue'n |-
0} "9 Juiod

/ 0981

+Q paeosip

SSA

| — N @ouesip Bulwwen uigim g ata | N\ gggy
Buowe 'q Aue si aisy) § suLIBla(

ON

1A ejep alojsal 0} pa}oalIod Jole g ued
5 yoeyo pue '3 ejep ey yons HHa o

1

pue 'g -
0} 0 Jurod

/ o¥8lL

/

0081

g8l 9Ol

SOA

L — N @ouejsip BulweH uiypm "3 ¢33 1\ gegy
Buowe 'g Aue st aiay} JI sulwiBle(
|

‘WA yoayo mau sindwion eyep mau aq Hq 197

1

w

\IEOH...nNOth.Cm“...nNm,rm O“. mc_ﬂc_oa EOT.LNO.rO
3¥o8yo pue "3¢ - “g°tg ejep se paiols Buiaq
52010 yosyo pue “g* 7 elep i belS | - olg

US 9,258,014 B2

Sheet 19 of 21

Feb. 9, 2016

U.S. Patent

H4q paeosip

‘+A paeosip pue
g o ttaIes | N\ 61

oz_

‘A elep 2J0]Sal 0} PB}0a.II0D J0LIS 8 ued Hy

pue “4 o} "4 308y pue ‘g erep jeyy yons g jo | — N souelsIp
wlod ‘Hn SOA BuiwweH uiyum 'q erep buipuodsaiios yum RN
0} """ 1e89 u-wgee-se gt g Buowe |4 Aue s1 alay) ji suluieiag
S 0961

+Q paeosip
pue “3 0 '

ON _
-Hq ejep 910)1s8l 0} PO)0SII0D JOLIS 3Q UBD
Hia yoeyo pue '3 ejep Jey; yons g jo

juiod o
0} 4108

/ ov6l

/

0061

61 Old

soA | L — W @ouejsip Buiwey ulypm "3 4343 [\ gep)
Buowe 'g Aue si a1ay} JI SuUILIS}e(
4

‘A yosyo mau sindwion "eyep mau ag Hg 1o ~_
0cel

]

T

m.....NH—._\H_.Cm,....Nm_wm OH m_(_:._..__OQ CIE.H_.....Nm._qH—
3osyo pue "g‘--¢g‘tg ejep se palojs Buleq

W2l yaguo pue Ug e eqitq erep Yyim Hels / 0LB1L

US 9,258,014 B2

Sheet 20 of 21

Feb. 9, 2016

U.S. Patent

J01e2IpU| &
JoJ13 X
0202 \ .,
eyed
pajelsusbey |
| Jojesedwo Jee
(oppsyd 1% E, WOO N\ ggoz 0¥0Z \ , (Myeleq
(0)ereg
(9)¥23yD 51po
lojessuan) | co:owtoo / 0507
Yoayg |
o7 (Mo3U? (1)ereq
3o9UD eleq
0Z 'Ol N 020z " 10z

US 9,258,014 B2

Sheet 21 of 21

Feb. 9, 2016

U.S. Patent

L¢ Ol

F 3
¥

ocle

Xujen
¥oeyD | - 09lz
XL /
eleq | ~— 06l¢ ovle
ayoen
peaiyL
- 0812
XUJBN
Buipooug |- 0412 AN ozie
Aowa ulepy
2109
Buissaoold [_ oLLZ

00l¢c

US 9,258,014 B2

1
USING PARITY DATA FOR CONCURRENT
DATA AUTHENTICATION, CORRECTION,
COMPRESSION, AND ENCRYPTION

CROSS REFERENCE TO RELATED
APPLICATION

This application is a continuation and claims priority to and
the benefit of U.S. patent application Ser. No. 13/727,581,
entitled USING PARITY DATA FOR CONCURRENT
DATA AUTHENTICATION, CORRECTION, COMPRES-
SION, AND ENCRYPTION, filed on Dec. 26, 2012, which is
a continuation-in-part of U.S. patent application Ser. No.
13/341,833, entitled ACCELERATED ERASURE CODING
SYSTEM AND METHOD (hereinafter “the Benefit Appli-
cation”), now U.S. Pat. No. 8,683,296, filed on Dec. 30, 2011,
the entire contents of all of which are incorporated herein by
reference.

BACKGROUND

1. Field

Aspects of embodiments of the present invention are
directed toward a system and method of using parity data for
erasure code data verification, correction, encryption, and
compression, alone or in combination with each other.

2. Description of Related Art (from the Benefit Applica-
tion)

An erasure code is a type of error-correcting code (ECC)
useful for forward error-correction in applications like a
redundant array of independent disks (RAID) or high-speed
communication systems. In a typical erasure code, data (or
original data) is organized in stripes, each of which is broken
up into N equal-sized blocks, or data blocks, for some positive
integer N. The data for each stripe is thus reconstructable by
putting the N data blocks together. However, to handle situ-
ations where one or more of the original N data blocks gets
lost, erasure codes also encode an additional M equal-sized
blocks (called check blocks or check data) from the original N
data blocks, for some positive integer M.

The N data blocks and the M check blocks are all the same
size. Accordingly, there are a total of N+M equal-sized blocks
after encoding. The N+M blocks may, for example, be trans-
mitted to a receiver as N+M separate packets, or written to
N+M corresponding disk drives. For ease of description, all
N+M blocks after encoding will be referred to as encoded
blocks, though some (for example, N of them) may contain
unencoded portions of the original data. That is, the encoded
data refers to the original data together with the check data.

The M check blocks build redundancy into the system, in a
very efficient manner, in that the original data (as well as any
lost check data) can be reconstructed if any N of the N+M
encoded blocks are received by the receiver, or if any N of the
N+M disk drives are functioning correctly. Note that such an
erasure code is also referred to as “optimal.” For ease of
description, only optimal erasure codes will be discussed in
this application. In such a code, up to M of the encoded blocks
can be lost, (e.g., up to M of the disk drives can fail) so that if
any N of the N+M encoded blocks are received successfully
by the receiver, the original data (as well as the check data)
can be reconstructed. N/(N+M) is thus the code rate of the
erasure code encoding (i.e., how much space the original data
takes up in the encoded data). Erasure codes for select values
of N and M can be implemented on RAID systems employing
N+M (disk) drives by spreading the original data among N
“data” drives, and using the remaining M drives as “check”
drives. Then, when any N of the N+M drives are correctly

10

15

20

25

30

35

40

45

50

55

60

65

2

functioning, the original data can be reconstructed, and the
check data can be regenerated.

Erasure codes (or more specifically, erasure coding sys-
tems) are generally regarded as impractical for values of M
larger than 1 (e.g., RAIDS systems, such as parity drive sys-
tems) or 2 (RAID6 systems), that is, for more than one or two
check drives. For example, see H. Peter Anvin, “The math-
ematics of RAID-6,” the entire content of which is incorpo-
rated herein by reference, p. 7, “Thus, in 2-disk-degraded
mode, performance will be very slow. However, it is expected
that that will be a rare occurrence, and that performance will
not matter significantly in that case.”” See also Robert Mad-
dock et al., “Surviving Two Disk Failures,” p. 6, “The main
difficulty with this technique is that calculating the check
codes, and reconstructing data after failures, is quite complex.
It involves polynomials and thus multiplication, and requires
special hardware, or at least a signal processor, to do it at
sufficient speed.”” In addition, see also James S. Plank, “All
About Erasure Codes:—Reed-Solomon Coding—LDPC
Coding,” slide 15 (describing computational complexity of
Reed—Solomon decoding), “Bottom line: When n & m grow,
it is brutally expensive.” Accordingly, there appears to be a
general consensus among experts in the field that erasure
coding systems are impractical for RAID systems for all but
small values of M (that is, small numbers of check drives),
suchas 1 or 2.

Modern disk drives, on the other hand, are much less reli-
able than those envisioned when RAID was proposed. This is
due to their capacity growing out of proportion to their reli-
ability. Accordingly, systems with only a single check disk
have, for the most part, been discontinued in favor of systems
with two check disks.

In terms of reliability, a higher check disk count is clearly
more desirable than a lower check disk count. If the count of
error events on different drives is larger than the check disk
count, data may be lost and that cannot be reconstructed from
the correctly functioning drives. Error events extend well
beyond the traditional measure of advertised mean time
between failures (MTBF). A simple, real world example is a
service event on a RAID system where the operator mistak-
enly replaces the wrong drive or, worse yet, replaces a good
drive with a broken drive. In the absence of any generally
accepted methodology to train, certify, and measure the effec-
tiveness of service technicians, these types of events occur at
an unknown rate, but certainly occur. The foolproof solution
for protecting data in the face of multiple error events is to
increase the check disk count.

3. Description of Related Art (New)

Parity data is used in digital error detecting and correcting
logic, such as erasure codes. An erasure code is a type of
error-correcting code (ECC) useful for forward error-correc-
tion in applications like a redundant array of independent
disks (or devices, also known as RAID) or high-speed com-
munication systems. In a typical erasure code, data (or origi-
nal data) is organized in stripes, each of which is broken up
into N equal-sized blocks, or data blocks, for some positive
integer N. The data for each stripe is thus reconstructable by
putting the N data blocks together. However, to handle situ-
ations where one or more of the original N data blocks get lost
(for example, missing, corrupted, etc.), erasure codes also
encode an additional M equal-sized blocks (called check
blocks or check data; also referred to as parity blocks or parity
data) from the original N data blocks, for some positive inte-
ger M.

The N data blocks and the M check blocks are all the same
size. Accordingly, there are a total of N+M equal-sized blocks
after encoding. The N+M blocks may, for example, be trans-

US 9,258,014 B2

3

mitted to a receiver as N+M separate packets, or written to
N+M corresponding disk drives, or physically or logically
separated from each other by some other device or conven-
tion. For ease of description, all N+M blocks after encoding
will be referred to as encoded blocks, though some (for
example, N of them) may contain unencoded portions of the
original data. That is, the encoded data refers to the original
data together with the check data. Another way to look at this
is that the original data can be trivially encoded into N blocks,
one for each original data block. Still another way to look at
this is that the original N data blocks can be encoded into
N+M encoded blocks.

The M check blocks build redundancy into the system, in a
very efficient manner, in that the original data (as well as any
lost check data) can be reconstructed if any N of the N+M
encoded blocks are received by the receiver, or if any N of the
N+M disk drives are functioning correctly (or, in short, if any
N of the N+M encoded blocks are available). Note that such
an erasure code is also referred to as “optimal.”” For ease of
description, only optimal erasure codes will be discussed in
this application. In such a code, up to M of the encoded blocks
can be lost, (e.g., up to M of the disk drives can fail) so that if
any N of the N+M encoded blocks are received successfully
by the receiver, the original data (as well as the check data)
can be reconstructed. N/(N+M) is thus the code rate of the
erasure code encoding (i.e., how much space the original data
takes up in the encoded data). Erasure codes for select values
of N and M can be implemented on RAID systems employing
N+M (disk) drives by spreading the original data among N
“data” drives, and using the remaining M drives as “check”
drives. Then, when any N of the N+M drives are correctly
functioning, the original data can be reconstructed, and the
check data can be regenerated.

Systems and methods of implementing practical erasure
codes for arbitrary values of N and M are described in the
Benefit Application and included herein. The advent of such
practical implementations allows potentially a large number
M of check drives in a RAID environment, some or most of
which would not even be needed in a typical failure scenario.

Erasure codes are usually described with an underlying
assumption that, at any time, each encoded block is known
either to contain entirely correct data or to contain corrupted
or missing data. Accordingly, it is only a matter of making
sure that there are N encoded blocks that are assumed to have
correct data in order to guarantee that the original data can be
reconstructed. Silent data corruptions (SDCs), this is, the
introduction of errors into the encoded blocks, which can take
place in any portion of the memory or storage hierarchy, are
therefore assumed not to exist in this framework.

However, studies of real life data show otherwise. SDCs
are introduced throughout the memory and storage hierarchy.
Left undetected (and uncorrected), SDCs can propagate and
compromise data, amplifying their negative effects.

In Li, M. & Shu, J., Preventing Silent Data Corruptions
from Propagating During Data Reconstruction, 59 1EEE
Transactions oN Computers 1611-24 (vol. 12, December
2010) the authors describe the SDC phenomenon with era-
sure codes and propose solutions for SDC detection and cor-
rection during data reconstruction. However, as already men-
tioned, SDCs can be introduced anywhere in the memory or
storage hierarchy, so it would be desirable to prevent their
occurrence anywhere, and not just during data reconstruction.

SUMMARY
From the Benefit Application

Aspects of embodiments of the present invention address
these problems by providing a practical erasure coding sys-

40

45

65

4

tem that, for byte-level RAID processing (where each byte is
made up of 8 bits), performs well even for values of N+M as
large as 256 drives (for example, N=127 data drives and
M=129 check drives). Further aspects provide for a single
precomputed encoding matrix (or master encoding matrix) S
ofsizeM,, .. XN, ..ot (N, .. +M,, , IxN, . or-1)xN,, ., ele-
ments (e.g., bytes), which can be used, for example, for any
combination of N=N,, . data drives and M=<M,,,. check
drives such that N, +M, <256 (e.g., N, =127 and
M,,..=129,0r N, . =63 and M,, ,,=193). This is an improve-
ment over prior art solutions that rebuild such matrices from
scratch every time N or M changes (such as adding another
check drive). Still higher values of N and M are possible with
larger processing increments, such as 2 bytes, which affords
up to N+M=65,536 drives (such as N=32,767 data drives and
M=32,769 check drives).

Higher check disk count can offer increased reliability and
decreased cost. The higher reliability comes from factors
such as the ability to withstand more drive failures. The
decreased cost arises from factors such as the ability to create
larger groups of data drives. For example, systems with two
checks disks are typically limited to group sizes of 10 or fewer
drives for reliability reasons. With a higher check disk count,
larger groups are available, which can lead to fewer overall
components for the same unit of storage and hence, lower
cost.

Additional aspects of embodiments of the present inven-
tion further address these problems by providing a standard
parity drive as part of the encoding matrix. For instance,
aspects provide for a parity drive for configurations with up to
127 data drives and up to 128 (non-parity) check drives, for a
total of up to 256 total drives including the parity drive.
Further aspects provide for different breakdowns, such as up
to 63 data drives, a parity drive, and up to 192 (non-parity)
check drives. Providing a parity drive offers performance
comparable to RAIDS in comparable circumstances (such as
single data drive failures) while also being able to tolerate
significantly larger numbers of data drive failures by includ-
ing additional (non-parity) check drives.

Further aspects are directed to a system and method for
implementing a fast solution matrix algorithm for Reed—
Solomon codes. While known solution matrix algorithms
compute an NxN solution matrix (see, for example, J. S.
Plank, “A tutorial on Reed-Solomon coding for fault-toler-
ance in RAID-like systems,” Software—Practice & Experi-
ence, 27(9):995-1012, September 1997, and J. S. Plank and Y.
Ding, “Note: Correction to the 1997 tutorial on Reed-So-
lomon coding,” Technical Report CS-03-504, University of
Tennessee, April 2003), requiring O(N?) operations, regard-
less of the number of failed data drives, aspects of embodi-
ments of the present invention compute only an FxF solution
matrix, where F is the number of failed data drives. The
overhead for computing this FxF solution matrix is approxi-
mately F3/3 multiplication operations and the same number
of addition operations. Not only is F<N, in almost any prac-
tical application, the number of failed data drives F is consid-
erably smaller than the number of data drives N. Accordingly,
the fast solution matrix algorithm is considerably faster than
any known approach for practical values of F and N.

Still further aspects are directed toward fast implementa-
tions of the check data generation and the lost (original and
check) data reconstruction. Some of these aspects are directed
toward fetching the surviving (original and check) data a
minimum number of times (that is, at most once) to carry out
the data reconstruction. Some of these aspects are directed
toward efficient implementations that can maximize or sig-
nificantly leverage the available parallel processing power of

US 9,258,014 B2

5

multiple cores working concurrently on the check data gen-
eration and the lost data reconstruction. Existing implemen-
tations do not attempt to accelerate these aspects of the data
generation and thus fail to achieve a comparable level of
performance.

By providing practical and efficient systems and methods
for erasure coding systems (which for byte-level processing
can support up to N+M=256 drives, such as N=127 data
drives and M=129 check drives, including a parity drive),
applications such as RAID systems that can tolerate far more
failing drives than was thought to be possible or practical can
be implemented with accelerated performance significantly
better than any prior art solution.

SUMMARY
New

Aspects of embodiments of the present invention are
directed toward a system and method of using parity data for
erasure code data verification and authentication, error detec-
tion and correction, compression, and encryption. In particu-
lar, aspects are directed toward verifying data, including
detecting and correcting silent data corruptions (SDCs) in the
memory or storage hierarchy.

In an exemplary embodiment, RAID parity data is main-
tained with the contents of a RAID cache. Accordingly, Read
operations of data from the RAID cache can have any of their
corresponding data and check blocks verified before or after
the Read operations are performed. It may also to be possible
to correct the errors, especially if they are not too numerous.
In addition, Write operations of data to the RAID cache can
have their corresponding data and check blocks verified (with
possible error correction) before or after the Write operations
are performed.

In further embodiments of the present invention, the num-
ber of check blocks kept in the RAID cache can differ from
the number of check drives used to store the check (parity)
data. That is, the RAID cache stripe size can differ from the
external (e.g., disk drive) stripe size, which allows for both
sizes to be optimized depending on factors such as hardware
resources available, reliability versus RAID cache size and
processing overhead, etc.

According to an exemplary embodiment of the present
invention, a system for software error-correcting code (ECC)
protection or compression of original data using ECC data in
a first memory is provided. The system includes a processing
core for executing computer instructions and accessing data
from a main memory, and a non-volatile storage medium for
storing the computer instructions. The processing core, the
storage medium, and the computer instructions are config-
ured to implement the software ECC protection or compres-
sion of the original data using the ECC data in the first
memory. The software ECC protection or compression
includes: a data matrix for holding the original data in the first
memory; a check matrix for holding the ECC data in the first
memory; an encoding matrix for holding first factors in the
main memory, the first factors being for encoding the original
data into the ECC data; and a thread for executing on the
processing core. The thread includes a Galois Field multiplier
for multiplying entries of the data matrix by an entry of the
encoding matrix, and a sequencer for ordering operations
through the data matrix and the encoding matrix using the
Galois Field multiplier to generate the ECC data.

The sequencer may be configured to generate the ECC data
on write operations of the original data to the first memory.

15

40

45

65

6

The sequencer may be further configured to regenerate the
ECC data on read operations of the original data from the first
memory.

The thread may further include a comparator for compar-
ing the regenerated ECC data with the generated ECC data.

The thread may further include an error corrector for cor-
recting errors in the held original data and the held ECC data.

The Galois Field multiplier may be a parallel multiplier for
concurrently multiplying the entries of the data matrix by the
entry of the encoding matrix.

The processing core may include a plurality of processing
cores. The thread may include a plurality of threads. The
software ECC protection or compression may further include
a scheduler for generating the ECC data by dividing the data
matrix into a plurality of data matrices, dividing the check
matrix into a plurality of check matrices, assigning corre-
sponding ones of the data matrices and the check matrices to
the threads, and assigning the threads to the processing cores
to concurrently generate portions of the ECC data corre-
sponding to the check matrices from respective ones of the
data matrices.

The processing core may include a plurality of processing
cores. The thread may include a plurality of threads. The
software ECC protection or compression may further include
a scheduler for generating the ECC data by dividing the data
matrix into a plurality of data matrices, dividing the check
matrix into a plurality of check matrices, assigning corre-
sponding ones of the data matrices and the check matrices to
the threads, and assigning the threads to the processing cores
to concurrently generate portions of the ECC data corre-
sponding to the check matrices from respective ones of the
data matrices.

The software ECC protection or compression may further
include a second check matrix for holding second ECC datain
the first memory. The encoding matrix may be further con-
figured to hold second factors in the main memory, the second
factors being for encoding the original data into the second
ECC data. The sequencer may be further configured to order
operations through the data matrix and the encoding matrix
using the Galois Field multiplier to generate the second ECC
data.

The sequencer may be further configured to regenerate the
ECC data or the second ECC data on read operations of the
original data from the first memory. The thread may further
include a comparator for comparing the regenerated ECC
data with the generated ECC data and for comparing the
regenerated second ECC data with the generated second ECC
data.

The thread may further include an error corrector for cor-
recting errors in the held original data, the held ECC data, and
the held second ECC data.

The Galois Field multiplier may be a parallel multiplier for
concurrently multiplying the entries of the data matrix by the
entry of the encoding matrix.

The processing core may include a plurality of processing
cores. The thread may include a plurality of threads. The
software ECC protection or compression may further include
a scheduler for generating the ECC data and the second ECC
data by: dividing the data matrix into a plurality of data
matrices; dividing the check matrix into a plurality of check
matrices; dividing the second check matrix into a plurality of
second check matrices; assigning corresponding ones of the
data matrices, the check matrices, and the second check
matrices to the threads; and assigning the threads to the pro-
cessing cores to concurrently generate portions of the ECC
data corresponding to the check matrices from respective
ones of the data matrices and to concurrently generate por-

US 9,258,014 B2

7

tions of the second ECC data corresponding to the second
check matrices from respective ones of the data matrices.

The processing core may include a plurality of processing
cores. The thread may include a plurality of threads. The
software ECC protection or compression may further include
a scheduler for generating the ECC data and the second ECC
data by: dividing the data matrix into a plurality of data
matrices; dividing the check matrix into a plurality of check
matrices; dividing the second check matrix into a plurality of
second check matrices; assigning corresponding ones of the
data matrices, the check matrices, and the second check
matrices to the threads; and assigning the threads to the pro-
cessing cores to concurrently generate portions of the ECC
data corresponding to the check matrices from respective
ones of the data matrices and to concurrently generate por-
tions of the second ECC data corresponding to the second
check matrices from respective ones of the data matrices.

The original data may include first ones and second ones of
the original data. The ECC data may include corresponding
first ones and second ones of the ECC data. The thread may
further include a compressor for compressing the original
data in the first memory by storing the first ones of the original
data in the first memory, storing the second ones of the ECC
data in the first memory, not storing the second ones of the
original data in the first memory, and corresponding the sec-
ond ones of the ECC data to the first ones of the original data.

The compressor may be further configured to not store the
first ones of the ECC data in the first memory.

The thread may further include a decompressor for regen-
erating the second ones of the original data from the first ones
of the original data and the second ones of the ECC data.

The decompressor may include an error corrector for
regenerating one of the second ones of the original data by
performing error correction on a corresponding one of the
first ones of the original data using a corresponding one of the
second ones of the ECC data.

The compressor may be configured to correspond each one
of'the second ones of the ECC data directly to one of the first
ones of the original data, or indirectly to the one of the first
ones of the original data via a different one of the second ones
of'the ECC data that corresponds to the one of the first ones of
the ECC data.

The thread may further include a comparator for keeping
the first ones of the original data distinct from one another.

The compressor may be further configured to store the first
ones of the ECC data in the first memory. The comparator
may be further configured to compare the generated ECC data
with the first ones of the ECC data to identify a duplicate of
one of the first ones of the original data.

The thread may further include an error corrector. The
compressor may be configured to, when adding new original
data having new ECC data to the first memory, use the error
corrector to identify a corresponding one of the first ones of
the original data that can generate the new original data by
performing error correction on the corresponding one of the
first ones of the original data using the new ECC data.

The compressor may be configured to: add the new original
data to the first memory as one of the first ones of the original
data when there is no said corresponding one of the first ones
of the original data; and add the new ECC data to the first
memory as one of the second ones of the ECC data, not add
the new original data to the first memory, and correspond the
new ECC data to the corresponding one of the first ones of the
original data when the error corrector identifies the corre-
sponding one of the first ones of the original data.

According to another exemplary embodiment of the
present invention, a method of error-correcting code (ECC)

10

15

20

25

30

35

40

45

50

55

60

65

8

protection or compression of original data with ECC datain a
first memory using a computing system including a process-
ing core for executing computer instructions and accessing
data from a main memory, and a non-volatile storage medium
for storing the computer instructions is provided. The method
includes accessing the computer instructions from the storage
medium, executing the computer instructions on the process-
ing core, arranging the original data as a data matrix in the first
memory, arranging the ECC data as a check matrix in the first
memory, arranging first factors as an encoding matrix in the
main memory, and encoding the original data into the ECC
data using the first factors. The encoding of the original data
into the ECC data includes multiplying entries of the data
matrix by an entry of the encoding matrix using Galois Field
multiplication, ordering operations through the data matrix
and the encoding matrix using the Galois Field multiplication
to generate the ECC data.

The encoding of the original data into the ECC data may
further include encoding the ECC data when writing the
original data to the first memory.

The method may further include re-encoding the original
data into a copy of the ECC data when reading the original
data from the first memory.

The method may further include comparing the ECC data
with the copy of the ECC data.

The method may further include correcting errors in the
original data or the ECC data by using the ECC data.

The processing core may include a plurality of processing
cores. The encoding of the original data into the ECC data
may further include dividing the data matrix into a plurality of
data matrices, dividing the check matrix into a plurality of
check matrices, and assigning corresponding ones of the data
matrices and the check matrices to the processing cores to
concurrently encode portions of the original data correspond-
ing to the data matrices into respective portions of the ECC
data corresponding to the check matrices.

The method may further include arranging second ECC
data as a second check matrix in the first memory, arranging
second factors in the encoding matrix, and encoding the origi-
nal data into the second ECC data using the second factors.
The encoding of the original data into the second ECC data
may include multiplying entries of the data matrix by an entry
of'the encoding matrix using further Galois Field multiplica-
tion, and ordering operations through the data matrix and the
encoding matrix using the further Galois Field multiplication
to generate the second ECC data.

The original data may include first ones and second ones of
the original data. The ECC data may include corresponding
first ones and second ones of the ECC data. The method may
further include compressing the original data in the first
memory by storing the first ones of the original data in the first
memory, storing the second ones of the ECC data in the first
memory, not storing the second ones of the original data in the
first memory, and corresponding the second ones of the ECC
data to the first ones of the original data.

The method may further include not storing the first ones of
the ECC data in the first memory.

The method may further include decompressing the origi-
nal data by regenerating the second ones of the original data
from the first ones of the original data and the second ones of
the ECC data.

Said regenerating one of the second ones of the original
data may include performing error correction on a corre-
sponding one of the first ones of the original data using a
corresponding one of the second ones of the ECC data.

The method may further include when adding new original
data having new ECC data to the first memory, identifying a

US 9,258,014 B2

9

corresponding one of the first ones of the original data that can
generate the new original data by performing error correction
on the corresponding one of the first ones of the original data
using the new ECC data.

The method may further include: adding the new original
data to the first memory as one of the first ones of the original
data when there is no said corresponding one of the first ones
of' the original data; and adding the new ECC data to the first
memory as one of the second ones of the ECC data, not adding
the new original data to the first memory, and corresponding
the new ECC data to the corresponding one of the first ones of
the original data after the identifying of the corresponding
one of the first ones of the original data.

According to embodiments of the present invention, RAID
cache data can be verified and any detected errors can possi-
bly be corrected by maintaining some or all of the correspond-
ing RAID parity data at all times in the RAID cache. This
helps lessen or eliminate silent data corruptions (SDCs)
resulting from any part of the memory or storage hierarchy
associated with the RAID cache or storage subsystem.

Further embodiments are directed to other applications,
such as data authentication, compression, and encryption.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, together with the specifica-
tion, illustrate exemplary embodiments of the present inven-
tion and, together with the description, serve to explain
aspects and principles of the present invention. FIGS. 1-9 are
from the Benefit Application, while FIGS. 10-21 are new.

FIG. 1 shows an exemplary stripe of original and check
data according to an embodiment of the present invention.

FIG. 2 shows an exemplary method for reconstructing lost
data after a failure of one or more drives according to an
embodiment of the present invention.

FIG. 3 shows an exemplary method for performing a par-
allel lookup Galois field multiplication according to an
embodiment of the present invention.

FIG. 4 shows an exemplary method for sequencing the
parallel lookup multiplier to perform the check data genera-
tion according to an embodiment of the present invention.

FIGS. 5-7 show an exemplary method for sequencing the
parallel lookup multiplier to perform the lost data reconstruc-
tion according to an embodiment of the present invention.

FIG. 8 illustrates a multi-core architecture system accord-
ing to an embodiment of the present invention.

FIG. 9 shows an exemplary disk drive configuration
according to an embodiment of the present invention.

FIG. 10 illustrates an exemplary memory and storage hier-
archy system according to an embodiment of the present
invention.

FIG. 11 illustrates an exemplary RAID cache according to
an embodiment of the present invention.

FIG. 12 illustrates an exemplary method for consistency
checking or error detection according to an embodiment of
the present invention.

FIG. 13 illustrates an exemplary method for detecting and
correcting errors according to an embodiment of the present
invention.

FIG. 14 illustrates an exemplary method for correcting
errors according to an embodiment of the present invention.

FIG. 15 illustrates an exemplary method for correcting
errors according to another embodiment of the present inven-
tion.

FIG. 16 illustrates an exemplary method of compressing
data according to an embodiment of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

10

FIG. 17 illustrates an exemplary method of compressing
data according to another embodiment of the present inven-
tion.

FIG. 18 illustrates an exemplary method of compressing
data according to yet another embodiment of the present
invention.

FIG. 19 illustrates an exemplary method of compressing
data according to still yet another embodiment of the present
invention.

FIG. 20 illustrates exemplary hardware or software logic
for implementing the error detecting and correcting logic
according to an embodiment of the present invention.

FIG. 21 illustrates an exemplary system for implementing
software error-correcting code (ECC) protection or compres-
sion of original data using ECC data in a cache according to
an embodiment of the present invention.

DETAILED DESCRIPTION
From the Benefit Application

Hereinafter, exemplary embodiments of the invention will
be described in more detail with reference to the accompany-
ing drawings. In the drawings, like reference numerals refer
to like elements throughout.

While optimal erasure codes have many applications, for
ease of description, they will be described in this application
with respect to RAID applications, i.e., erasure coding sys-
tems for the storage and retrieval of digital data distributed
across numerous storage devices (or drives), though the
present application is not limited thereto. For further ease of
description, the storage devices will be assumed to be disk
drives, though the invention is not limited thereto. In RAID
systems, the data (or original data) is broken up into stripes,
each of which includes N uniformly sized blocks (data
blocks), and the N blocks are written across N separate drives
(the data drives), one block per data drive.

In addition, for ease of description, blocks will be assumed
to be composed of L elements, each element having a fixed
size, say 8 bits or one byte. An element, such as a byte, forms
the fundamental unit of operation for the RAID processing,
but the invention is just as applicable to other size elements,
such as 16 bits (2 bytes). For simplification, unless otherwise
indicated, elements will be assumed to be one byte in size
throughout the description that follows, and the term “ele-
ment(s)” and “byte(s)” will be used synonymously.

Conceptually, different stripes can distribute their data
blocks across different combinations of drives, or have dif-
ferent block sizes or numbers of blocks, etc., but for simpli-
fication and ease of description and implementation, the
described embodiments in the present application assume a
consistent block size (L bytes) and distribution of blocks
among the data drives between stripes. Further, all variables,
such as the number of data drives N, will be assumed to be
positive integers unless otherwise specified. In addition, since
the N=1 case reduces to simple data mirroring (that is, copy-
ing the same data drive multiple times), it will also be
assumed for simplicity that N=2 throughout.

The N data blocks from each stripe are combined using
arithmetic operations (to be described in more detail below)
in M different ways to produce M blocks of check data (check
blocks), and the M check blocks written across M drives (the
check drives) separate from the N data drives, one block per
check drive. These combinations can take place, for example,
when new (or changed) data is written to (or back to) disk.
Accordingly, each of the N+M drives (data drives and check
drives) stores a similar amount of data, namely one block for

US 9,258,014 B2

11

each stripe. As the processing of multiple stripes is concep-
tually similar to the processing of one stripe (only processing
multiple blocks per drive instead of one), it will be further
assumed for simplification that the data being stored or
retrieved is only one stripe in size unless otherwise indicated.
It will also be assumed that the block size L is sufficiently
large that the data can be consistently divided across each
block to produce subsets of the data that include respective
portions of the blocks (for efficient concurrent processing by
different processing units).

FIG. 1 shows an exemplary stripe 10 of original and check
data according to an embodiment of the present invention.

Referring to FIG. 1, the stripe 10 can be thought of not only
as the original N data blocks 20 that make up the original data,
but also the corresponding M check blocks 30 generated from
the original data (that is, the stripe 10 represents encoded
data). Each of the N data blocks 20 is composed of L bytes 25
(labeled byte 1, byte 2, . . ., byte L), and each of the M check
blocks 30 is composed of L. bytes 35 (labeled similarly). In
addition, check drive 1, byte 1, is a linear combination of data
drive 1, byte 1; data drive 2, byte 1; . . . ; data drive N, byte 1.
Likewise, check drive 1, byte 2, is generated from the same
linear combination formula as check drive 1, byte 1, only
using data drive 1, byte 2; data drive 2, byte 2; . . . ; data drive
N, byte 2. In contrast, check drive 2, byte 1, uses a different
linear combination formula than check drive 1, byte 1, but
applies it to the same data, namely data drive 1, byte 1; data
drive 2, byte 1; . . . ; data drive N, byte 1. In this fashion, each
of the other check bytes 35 is a linear combination of the
respective bytes of each of the N data drives 20 and using the
corresponding linear combination formula for the particular
check drive 30.

The stripe 10 in FIG. 1 can also be represented as a matrix
C of encoded data. C has two sub-matrices, namely original
data D on top and check data J on bottom. That is,

Dy Dy ... Dy

Dy Dy ... Dy

C_[D}_ Dyi Dwa ... Dyp
J Jiu Ji2 Jir

Ju Iz oL

Jur Jm2 o L

where D, =byte j from data drive i and J,=byte j from check
drive i. Thus, the rows of encoded data C represent blocks,
while the columns represent corresponding bytes of each of
the drives.

Further, in case of a disk drive failure of one or more disks,
the arithmetic operations are designed in such a fashion that
for any stripe, the original data (and by extension, the check
data) can be reconstructed from any combination of N data
and check blocks from the corresponding N+M data and
check blocks that comprise the stripe. Thus, RAID provides
both parallel processing (reading and writing the data in
stripes across multiple drives concurrently) and fault toler-
ance (regeneration of the original data even ifas many as M of
the drives fail), at the computational cost of generating the
check data any time new data is written to disk, or changed
data is written back to disk, as well as the computational cost
of reconstructing any lost original data and regenerating any
lost check data after a disk failure.

For example, for M=1 check drive, a single parity drive can
function as the check drive (i.e., a RAID4 system). Here, the
arithmetic operation is bitwise exclusive OR of each of the N

10

15

20

25

30

35

40

45

50

55

60

65

12

corresponding data bytes in each data block of the stripe. In
addition, as mentioned earlier, the assignment of parity
blocks from different stripes to the same drive (i.e., RAID4)
or different drives (i.e., RAIDS) is arbitrary, but it does sim-
plity the description and implementation to use a consistent
assignment between stripes, so that will be assumed through-
out. Since M=1 reduces to the case of a single parity drive, it
will further be assumed for simplicity that M=2 throughout.

For such larger values of M, Galois field arithmetic is used
to manipulate the data, as described in more detail later.
Galois field arithmetic, for Galois fields of powers-of-2 (such
as 2°) numbers of elements, includes two fundamental opera-
tions: (1) addition (which is just bitwise exclusive OR, as with
the parity drive-only operations for M=1), and (2) multipli-
cation. While Galois field (GF) addition is trivial on standard
processors, GF multiplication is not. Accordingly, a signifi-
cant component of RAID performance for M=2 is speeding
up the performance of GF multiplication, as will be discussed
later. For purposes of description, GF addition will be repre-
sented by the symbol + throughout while GF multiplication
will be represented by the symbol x throughout.

Briefly, in exemplary embodiments of the present inven-
tion, each of the M cheek drives holds linear combinations
(over GF arithmetic) of the N data drives of original data, one
linear combination (i.e., a GF sum of N terms, where each
term represents a byte of original data times a corresponding
factor (using GF multiplication) for the respective data drive)
for each check drive, as applied to respective bytes in each
block. One such linear combination can be a simple parity,
i.e., entirely GF addition (all factors equal 1), such as a GF
sum of'the first byte in each block of original data as described
above.

The remaining M-1 linear combinations include more
involved calculations that include the nontrivial GF multipli-
cation operations (e.g., performing a GF multiplication of the
first byte in each block by a corresponding factor for the
respective data drive, and then performing a GF sum of all
these products). These linear combinations can be repre-
sented by an (N+M)xN matrix (encoding matrix or informa-
tion dispersal matrix (IDM)) E of the different factors, one
factor for each combination of (data or check) drive and data
drive, with one row for each of the N+M data and check drives
and one column for each of the N data drives. The IDM E can
also be represented as

[}

where [, represents the NxN identity matrix (i.e., the original
(unencoded) data) and H represents the MxN matrix of fac-
tors for the check drives (where each of the M rows corre-
sponds to one of the M check drives and each of the N
columns corresponds to one of the N data drives).

Thus,

1 0 0
0 1 0
1 0 0o ... 1
(1] |
H Hy, Hp ... Hy
Hy Hy ... Hwn
Hyy Hyz ... Hyy

where H,=factor for check drive i and data drive j. Thus, the
rows of encoded data C represent blocks, while the columns
represent corresponding bytes of each of the drives. In addi-

US 9,258,014 B2

13
tion, check factors H, original data D, and check data J are
related by the formula J=HxD (that is, matrix multiplication),
or

Ju Ji2o J

Ja I Ju |

Jur Iz o I
Hyy Hp ... Hy Dy Dy, ... Dy
Hy Hyp ... Hy 9 Dy Dy ... Dy
Hyy Hyo ... Hyw Dyy Dyz2 ... Dnp

where J,) =(H,,xD;)+(H,xD,)+ . . . +(H;xxDpy), Jio=
(Hy %Dy o)+ (HioxDop)+ - - +(H yxDin), Joy=(Hy <Dy)+
(H,oxDy)+ . . . +(H,u %Dy,), and in general, Jl.j:(Hl.lxDlj)+
(Hiszzj)+ . +(Hl.N><DNj) for 1=i=M and 1=j<L..

Such an encoding matrix E is also referred to as an infor-
mation dispersal matrix (IDM). It should be noted that matri-
ces such as check drive encoding matrix H and identity matrix
I, also represent encoding matrices, in that they represent
matrices of factors to produce linear combinations over GF
arithmetic of the original data. In practice, the identity matrix
1,/ 1s trivial and may not need to be constructed as part of the
IDME. Only the encoding matrix E, however, will be referred
to as the IDM. Methods of building an encoding matrix such
as IDM E or check drive encoding matrix H are discussed
below. In further embodiments of the present invention (as
discussed further in Appendix A), such (N+M)xN (or MxN)
matrices can be trivially constructed (or simply indexed) from
a master encoding matrix S, which is composed of (N, ..+
M, XN, . (or M, XN) bytes or elements, where
N,.oxtM,, ., =256 (or some other power of two) and N=N,, .
and M=M,, .. For example, one such master encoding matrix
S can include a 127x127 element identity matrix on top (for
uptoN,,, =127 data drives), a row of 1’s (for a parity drive),
and a 128x127 element encoding matrix on bottom (for up to
M,,,..=129 check drives, including the parity drive), for a total
of N, .+M, =256 drives.

The original data, in turn, can be represented by an NxL
matrix D of bytes, each of the N rows representing the L bytes
of'a block of the corresponding one of the N data drives. IfC
represents the corresponding (N+M)xL. matrix of encoded
bytes (where each of the N+M rows corresponds to one of the
N+M data and check drives), then C can be represented as
ExD=

[nlo=lao [0}

where J=HxD is an MxL matrix of check data, with each of
the M rows representing the L. check bytes of the correspond-
ing one of the M check drives. It should be noted that in the
relationships such as C=ExD or J=HxD, x represents matrix
multiplication over the Galois field (i.e., GF multiplication
and GF addition being used to generate each of the entries in,
for example, C or J).

In exemplary embodiments of the present invention, the
first row of the check drive encoding matrix H (or the (N+1)*
row of the IDM E) can be all 1°s, representing the parity drive.
For linear combinations involving this row, the GF multipli-

InxD
HxD

10

15

25

30

40

45

50

55

14

cation can be bypassed and replaced with a GF sum of the
corresponding bytes since the products are all trivial products
involving the identity element 1. Accordingly, in parity drive
implementations, the check drive encoding matrix H can also
be thought of as an (M-1)xN matrix of non-trivial factors
(that is, factors intended to be used in GF multiplication and
not just GF addition).

Much of the RAID processing involves generating the
check data when new or changed data is written to (or back to)
disk. The other significant event for RAID processing is when
one or more of the drives fail (data or check drives), or for
whatever reason become unavailable. Assume that in such a
failure scenario, F data drives fail and G check drives fail,
where F and G are nonnegative integers. If F=0, then only
check drives failed and all of the original data D survived. In
this case, the lost check data can be regenerated from the
original data D.

Accordingly, assume at least one data drive fails, that is,
F=1, and let K=N-F represent the number of data drives that
survive. K is also a nonnegative integer. In addition, let X
represent the surviving original data and'Y represent the lost
original data. That is, X is a Kx[L matrix composed of the K
rows of the original data matrix D corresponding to the K
surviving data drives, whileY is an Fx[L matrix composed of
the F rows of the original data matrix D corresponding to the
F failed data drives.

thus represents a permuted original data matrix D' (that is, the
original data matrix D, only with the surviving original data X
on top and the lost original data’Y on bottom. It should be
noted that once the lost original data’Y is reconstructed, it can
be combined with the surviving original data X to restore the
original data D, from which the check data for any of the
failed check drives can be regenerated.

It should also be noted that M—G check drives survive. In
order to reconstruct the lost original data Y, enough (that is, at
least N) total drives must survive. Given that K=N-F data
drives survive, and that M-G check drives survive, it follows
that (N-F)+(M-G)=N must be true to reconstruct the lost
original data Y. This is equivalent to F+G=M (i.e., no more
than F+G drives fail), or F<M-G (that is, the number of failed
data drives does not exceed the number of surviving check
drives). It will therefore be assumed for simplicity that F<M-
G.

In the routines that follow, performance can be enhanced
by prebuilding lists of the failed and surviving data and check
drives (that is, four separate lists). This allows processing of
the different sets of surviving and failed drives to be done
more efficiently than existing solutions, which use, for
example, bit vectors that have to be examined one bit at a time
and often include large numbers of consecutive zeros (or
ones) when ones (or zeros) are the bit values of interest.

FIG. 2 shows an exemplary method 300 for reconstructing
lost data after a failure of one or more drives according to an
embodiment of the present invention.

While the recovery process is described in more detail
later, briefly it consists of two parts: (1) determining the
solution matrix, and (2) reconstructing the lost data from the
surviving data. Determining the solution matrix can be done
in three steps with the following algorithm (Algorithm 1),
with reference to FIG. 2:

US 9,258,014 B2

15

1. (Step 310 in FIG. 2) Reducing the (M+N)xN IDM E to
an NxN reduced encoding matrix T (also referred to as
the transformed IDM) including the K surviving data
drive rows and any F of the M-G surviving check drive
rows (for instance, the first F surviving check drive rows,
as these will include the parity drive if it survived; recall
that F<M-G was assumed). In addition, the columns of
the reduced encoding matrix T are rearranged so that the
K columns corresponding to the K surviving data drives
are on the left side of the matrix and the F columns
corresponding to the F failed drives are on the right side
of'the matrix. (Step 320) These F surviving check drives
selected to rebuild the lost original data Y will hence-
forth be referred to as “the F surviving check drives,” and
their check data W will be referred to as “the surviving
check data,” even though M-G check drives survived. It
should be noted that W is an Fx[. matrix composed of the
F rows of the check data J corresponding to the F sur-
viving check drives. Further, the surviving encoded data
can be represented as a sub-matrix C' ofthe encoded data
C. The surviving encoded data C' is an NxL matrix
composed of the surviving original data X on top and the
surviving check data W on bottom, that is,

3]

2. (Step 330) Splitting the reduced encoding matrix T into
four sub-matrices (that are also encoding matrices): (i) a
KxK identity matrix I (corresponding to the K surviv-
ing data drives) in the upper left, (ii) a KxF matrix O of
zeros in the upper right, (iii) an FxK encoding matrix A
in the lower left corresponding to the F surviving check
drive rows and the K surviving data drive columns, and
(iv) an FxF encoding matrix B in the lower right corre-
sponding to the F surviving check drive rows and the F
failed data drive columns. Thus, the reduced encoding
matrix T can be represented as

[+ 5

3. (Step 340) Calculating the inverse B~* of the FxF encod-
ing matrix B. As is shown in more detail in Appendix A,
C'=TxD', or

MEWE

which is mathematically equivalent to W=AxX+BxY. B~ is
the solution matrix, and is itself an FxF encoding matrix.
Calculating the solution matrix B~ thus allows the lost origi-
nal data’Y to be reconstructed from the encoding matrices A
and B along with the surviving original data X and the sur-
viving check data W.

The FxK encoding matrix A represents the original encod-
ing matrix E, only limited to the K surviving data drives and
the F surviving check drives. That is, each of the F rows of A
represents a different one of the F surviving cheek drives,
while each of the K columns of A represents a different one of
the K surviving data drives. Thus, A provides the encoding

20

25

30

40

45

50

55

16

factors needed to encode the original data for the surviving
check drives, but only applied to the surviving data drives
(that is, the surviving partial check data). Since the surviving
original data X is available, A can be used to generate this
surviving partial check data.

In similar fashion, the FxF encoding matrix B represents
the original encoding matrix E, only limited to the F surviving
check drives and the F failed data drives. That is, the F rows of
B correspond to the same F rows of A, while each of the F
columns of B represents a different one of the F failed data
drives. Thus, B provides the encoding factors needed to
encode the original data for the surviving check drives, but
only applied to the failed data drives (that is, the lost partial
check data). Since the lost original data'Y is not available, B
cannot be used to generate any of the lost partial check data.
However, this lost partial check data can be determined from
A and the surviving check data W. Since this lost partial check
data represents the result of applying B to the lost original
dataY, B~! thus represents the necessary factors to reconstruct
the lost original data Y from the lost partial check data.

It should be noted that steps 1 and 2 in Algorithm 1 above
are logical, in that encoding matrices A and B (or the reduced
encoding matrix T, for that matter) do not have to actually be
constructed. Appropriate indexing of the IDM E (or the mas-
ter encoding matrix S) can be used to obtain any of their
entries. Step 3, however, is a matrix inversion over GF arith-
metic and takes O(F?) operations, as discussed in more detail
later. Nonetheless, this is a significant improvement over
existing solutions, which require O(N>) operations, since the
number of failed data drives F is usually significantly less than
the number of data drives N in any practical situation.

(Step 350 in FIG. 2) Once the encoding matrix A and the
solution matrix B~! are known, reconstructing the lost data
from the surviving data (that is, the surviving original data X
and the surviving check data W) can be accomplished in four
steps using the following algorithm (Algorithm 2):

1. Use A and the surviving original data X (using matrix
multiplication) to generate the surviving check data (i.e.,
AxX), only limited to the K surviving data drives. Call
this limited check data the surviving partial check data.

2. Subtract this surviving partial check data from the sur-
viving check data W (using matrix subtraction, i.e.,
W-AxX, which is just entry-by-entry GF subtraction,
which is the same as GF addition for this Galois field).
This generates the surviving check data, only this time
limited to the F failed data drives. Call this limited check
data the lost partial check data.

3. Use the solution matrix B~ and the lost partial check
data (using matrix multiplication, i.e., B~ x(W-AxX) to
reconstruct the lost original data Y. Call this the recov-
ered original data Y.

4. Use the corresponding rows of the IDM E (or master
encoding matrix S) for each of the G failed check drives
along with the original data D, as reconstructed from the
surviving and recovered original data X and Y, to regen-
erate the lost check data (using matrix multiplication).

As will be shown in more detail later, steps 1-3 together
require O(F) operations times the amount of original data D to
reconstruct the lost original data’Y for the F failed data drives
(i.e., roughly 1 operation per failed data drive per byte of
original data D), which is proportionally equivalent to the
O(M) operations times the amount of original data D needed
to generate the check data J for the M check drives (i.e.,
roughly 1 operation per check drive per byte of original data
D). In addition, this same equivalence extends to step 4,
which takes O(G) operations times the amount of original
data D needed to regenerate the lost check data for the G failed

US 9,258,014 B2

17

check drives (i.e., roughly 1 operation per failed check drive
per byte of original data D). In summary, the number of
operations needed to reconstruct the lost data is O(F+G) times
the amount of original data D (i.e., roughly 1 operation per
failed drive (data or check) per byte of original data D). Since
F+G=M, this means that the computational complexity of
Algorithm 2 (reconstructing the lost data from the surviving
data) is no more than that of generating the check data J from
the original data D.

As mentioned above, for exemplary purposes and ease of
description, data is assumed to be organized in 8-bit bytes,
each byte capable of taking on 25=256 possible values. Such
data can be manipulated in byte-size elements using GF arith-
metic for a Galois field of size 28=256 elements. It should also
be noted that the same mathematical principles apply to any
power-of-two 22 number of elements, not just 256, as Galois
fields can be constructed for any integral power of a prime
number. Since Galois fields are finite, and since GF opera-
tions never overflow, all results are the same size as the inputs,
for example, 8 bits.

In a Galois field of a power-of-two number of elements,
addition and subtraction are the same operation, namely a
bitwise exclusive OR (XOR) of the two operands. This is a
very fast operation to perform on any current processor. It can
also be performed on multiple bytes concurrently. Since the
addition and subtraction operations take place, for example,
on a byte-level basis, they can be done in parallel by using, for
instance, x86 architecture Streaming SIMD Extensions
(SSE) instructions (SIMD stands for single instruction, mul-
tiple data, and refers to performing the same instruction on
different pieces of data, possibly concurrently), such as
PXOR (Packed (bitwise) Exclusive OR).

SSE instructions can process, for example, 16-byte regis-
ters (XMM registers), and are able to process such registers as
though they contain 16 separate one-byte operands (or 8
separate two-byte operands, or four separate four-byte oper-
ands, etc.) Accordingly, SSE instructions can do byte-level
processing 16 times faster than when compared to processing
a byte at a time. Further, there are 16 XMM registers, so
dedicating four such registers for operand storage allows the
data to be processed in 64-byte increments, using the other 12
registers for temporary storage. That is, individual operations
can be performed as four consecutive SSE operations on the
four respective registers (64 bytes), which can often allow
such instructions to be efficiently pipelined and/or concur-
rently executed by the processor. In addition, the SSE instruc-
tions allows the same processing to be performed on different
such 64-byte increments of data in parallel using different
cores. Thus, using four separate cores can potentially speed
up this processing by an additional factor of 4 over using a
single core.

For example, a parallel adder (Parallel Adder) can be built
using the 16-byte XMM registers and four consecutive PXOR
instructions. Such parallel processing (that is, 64 bytes at a
time with only a few machine-level instructions) for GF arith-
metic is a significant improvement over doing the addition
one byte at a time. Since the data is organized in blocks of any
fixed number of bytes, such as 4096 bytes (4 kilobytes, or 4
KB) or 32,768 bytes (32 KB), a block can be composed of
numerous such 64-byte chunks (e.g., 64 separate 64-byte
chunks in 4 KB, or 512 chunks in 32 KB).

Multiplication in a Galois field is not as straightforward.
While much of it is bitwise shifts and exclusive OR’s (i.e.,
“additions”) that are very fast operations, the numbers “wrap”
in peculiar ways when they are shifted outside of their normal
bounds (because the field has only a finite set of elements),
which can slow down the calculations. This “wrapping” in the

5

10

15

20

25

30

35

40

45

50

55

60

65

18

GF multiplication can be addressed in many ways. For
example, the multiplication can be implemented serially (Se-
rial Multiplier) as a loop iterating over the bits of one operand
while performing the shifts, adds, and wraps on the other
operand. Such processing, however, takes several machine
instructions per bit for 8 separate bits. In other words, this
technique requires dozens of machine instructions per byte
being multiplied. This is inefficient compared to, for example,
the performance of the Parallel Adder described above.

For another approach (Serial Lookup Multiplier), multipli-
cation tables (of all the possible products, or at least all the
non-trivial products) can be pre-computed and built ahead of
time. For example, a table of 256x256=65,536 bytes can hold
all the possible products of the two different one-byte oper-
ands). However, such tables can force serialized access on
what are only byte-level operations, and not take advantage of
wide (concurrent) data paths available on modern processors,
such as those used to implement the Parallel Adder above.

In still another approach (Parallel Multiplier), the GF mul-
tiplication can be done on multiple bytes at a time, since the
same factor in the encoding matrix is multiplied with every
element in a data block. Thus, the same factor can be multi-
plied with 64 consecutive data block bytes at a time. This is
similar to the Parallel Adder described above, only there are
several more operations needed to perform the operation.
While this can be implemented as a loop on each bit of the
factor, as described above, only performing the shifts, adds,
and wraps on 64 bytes at a time, it can be more efficient to
process the 256 possible factors as a (C language) switch
statement, with inline code for each of 256 different combi-
nations of two primitive GF operations: Multiply-by-2 and
Add. For example, GF multiplication by the factor 3 can be
effected by first doing a Multiply-by-2 followed by an Add.
Likewise, GF multiplication by 4 is just a Multiply-by-2
followed by a Multiply-by-2 while multiplication by 6 is a
Multiply-by-2 followed by an Add and then by another Mul-
tiply-by-2.

While this Add is identical to the Parallel Adder described
above (e.g., four consecutive PXOR instructions to process
64 separate bytes), Multiply-by-2 is not as straightforward.
For example, Multiply-by-2 in GF arithmetic can be imple-
mented across 64 bytes at a time in 4 XMM registers via 4
consecutive PXOR instructions, 4 consecutive PCMPGTB
(Packed Compare for Greater Than) instructions, 4 consecu-
tive PADDB (Packed Add) instructions, 4 consecutive PAND
(Bitwise AND) instructions, and 4 consecutive PXOR
instructions. Though this takes 20 machine instructions, the
instructions are very fast and results in 64 consecutive bytes
of data at a time being multiplied by 2.

For 64 bytes of data, assuming a random factor between O
and 255, the total overhead for the Parallel Multiplier is about
6 calls to multiply-by-2 and about 3.5 calls to add, or about
6x20+3.5x4=134 machine instructions, or a little over 2
machine instructions per byte of data. While this compares
favorably with byte-level processing, it is still possible to
improve on this by building a parallel multiplier with a table
lookup (Parallel Lookup Multiplier) using the PSHUFB
(Packed Shuffle Bytes) instruction and doing the GF multi-
plication in 4-bit nibbles (half bytes).

FIG. 3 shows an exemplary method 400 for performing a
parallel lookup Galois field multiplication according to an
embodiment of the present invention.

Referring to FIG. 3, in step 410, two lookup tables are built
once: one lookup table for the low-order nibbles in each byte,
and one lookup table for the high-order nibbles in each byte.
Each lookup table contains 256 sets (one for each possible
factor) of'the 16 possible GF products ofthat factor and the 16

US 9,258,014 B2

19

possible nibble values. Each lookup table is thus
256x16=4096 bytes, which is considerably smaller than the
65,536 bytes needed to store a complete one-byte multiplica-
tion table. In addition, PSHUFB does 16 separate table look-
ups at once, each for one nibble, so 8 PSHUFB instructions
can be used to do all the table lookups for 64 bytes (128
nibbles).

Next, in step 420, the Parallel Lookup Multiplier is initial-
ized for the next set of 64 bytes of operand data (such as
original data or surviving original data). In order to save
loading this data from memory on succeeding calls, the Par-
allel Lookup Multiplier dedicates four registers for this data,
which are left intact upon exit of the Parallel Lookup Multi-
plier. This allows the same data to be called with different
factors (such as processing the same data for another check
drive).

Next in step 430, to process these 64 bytes of operand data,
the Parallel Lookup Multiplier can be implemented with 2
MOVDQA (Move Double Quadword Aligned) instructions
(from memory) to do the two table lookups and 4 MOVDQA
instructions (register to register) to initialize registers (such as
the output registers). These are followed in steps 440 and 450
by two nearly identical sets of 17 register-to-register instruc-
tions to carry out the multiplication 32 bytes at a time. Each
such set starts (in step 440) with 5 more MOVDQA instruc-
tions for further initialization, followed by 2 PSRLW (Packed
Shift Right Logical Word) instructions to realign the high-
order nibbles for PSHUFB, and 4 PAND instructions to clear
the high-order nibbles for PSHUFB. That is, two registers of
byte operands are converted into four registers of nibble oper-
ands. Then, in step 450, 4 PSHUFB instructions are used to do
the parallel table lookups, and 2 PXOR instructions to add the
results of the multiplication on the two nibbles to the output
registers.

Thus, the Parallel Lookup Multiplier uses 40 machine
instructions to perform the parallel multiplication on 64 sepa-
rate bytes, which is considerably better than the average 134
instructions for the Parallel Multiplier above, and only 10
times as many instructions as needed for the Parallel Adder.
While some of the Parallel Lookup Multiplier’s instructions
are more complex than those of the Parallel Adder, much of
this complexity can be concealed through the pipelined and/
or concurrent execution of numerous such contiguous
instructions (accessing different registers) on modern pipe-
lined processors. For example, in exemplary implementa-
tions, the Parallel Lookup Multiplier has been timed at about
15 CPU clock cycles per 64 bytes processed per CPU core
(about 0.36 clock cycles per instruction). In addition, the code
footprint is practically nonexistent for the Parallel Lookup
Multiplier (40 instructions) compared to that of the Parallel
Multiplier (about 34,300 instructions), even when factoring
the 8 KB needed for the two lookup tables in the Parallel
Lookup Multiplier.

In addition, embodiments of the Parallel Lookup Multi-
plier can be passed 64 bytes of operand data (such as the next
64 bytes of surviving original data X to be processed) in four
consecutive registers, whose contents can be preserved upon
exiting the Parallel Lookup Multiplier (and all in the same 40
machine instructions) such that the Parallel Lookup Multi-
plier can be invoked again on the same 64 bytes of data
without having to access main memory to reload the data.
Through such a protocol, memory accesses can be minimized
(or significantly reduced) for accessing the original data D
during check data generation or the surviving original data X
during lost data reconstruction.

Further embodiments of the present invention are directed
towards sequencing this parallel multiplication (and other

20

40

45

50

65

20

GF) operations. While the Parallel Lookup Multiplier pro-
cesses a GF multiplication of 64 bytes of contiguous data
times a specified factor, the calls to the Parallel Lookup Mul-
tiplier should be appropriately sequenced to provide efficient
processing. One such sequencer (Sequencer 1), for example,
can generate the check data J from the original data D, and is
described further with respect to FIG. 4.

The parity drive does not need GF multiplication. The
check data for the parity drive can be obtained, for example,
by adding corresponding 64-byte chunks for each of the data
drives to perform the parity operation. The Parallel Adder can
do this using 4 instructions for every 64 bytes of data for each
of'the N data drives, or N/16 instructions per byte.

The M-1 non-parity check drives can invoke the Parallel
Lookup Multiplier on each 64-byte chunk, using the appro-
priate factor for the particular combination of data drive and
check drive. One consideration is how to handle the data
access. Two possible ways are:

1) “column-by-column,” i.e., 64 bytes for one data drive,
followed by the next 64 bytes for that data drive, etc., and
adding the products to the running total in memory (us-
ing the Parallel Adder) before moving onto the next row
(data drive); and

2) “row-by-row,” i.e., 64 bytes for one data drive, followed
by the corresponding 64 bytes for the next data drive,
etc., and keeping a running total using the Parallel
Adder, then moving onto the next set of 64-byte chunks.

Column-by-column can be thought of as “constant factor,
varying data,” in that the (GF multiplication) factor usually
remains the same between iterations while the (64-byte) data
changes with each iteration. Conversely, row-by-row can be
thought of as “constant data, varying factor,” in that the data
usually remains the same between iterations while the factor
changes with each iteration.

Another consideration is how to handle the check drives.
Two possible ways are:

a) one at a time, i.e., generate all the check data for one
check drive before moving onto the next check drive;
and

b) all at once, i.e., for each 64-byte chunk of original data,
do all of the processing for each of the check drives
before moving onto the next chunk of original data.

While each of these techniques performs the same basic
operations (e.g., 40 instructions for every 64 bytes of data for
each of the N data drives and M-1 non-parity check drives, or
SN(M-1)/8 instructions per byte for the Parallel Lookup
Multiplier), empirical results show that combination (2)(b),
that is, row-by-row data access on all of the check drives
between data accesses performs best with the Parallel Lookup
Multiplier. One reason may be that such an approach appears
to minimize the number of memory accesses (namely, one) to
each chunk of the original data D to generate the check data J.
This embodiment of Sequencer 1 is described in more detail
with reference to FIG. 4.

FIG. 4 shows an exemplary method 500 for sequencing the
Parallel Lookup Multiplier to perform the check data genera-
tion according to an embodiment of the present invention.

Referring to FIG. 4, in step 510, the Sequencer 1 is called.
Sequencer 1 is called to process multiple 64-byte chunks of
data for each ofthe blocks across a stripe of data. For instance,
Sequencer 1 could be called to process 512 bytes from each
block. If, for example, the block size L is 4096 bytes, then it
would take eight such calls to Sequencer 1 to process the
entire stripe. The other such seven calls to Sequencer 1 could
be to different processing cores, for instance, to carry out the
check data generation in parallel. The number of 64-byte

US 9,258,014 B2

21

chunks to process at a time could depend on factors such as
cache dimensions, input/output data structure sizes, etc.

In step 520, the outer loop processes the next 64-byte
chunk of data for each of the drives. In order to minimize the
number of accesses of each data drive’s 64-byte chunk of data
from memory, the data is loaded only once and preserved
across calls to the Parallel Lookup Multiplier. The first data
drive is handled specially since the check data has to be
initialized for each check drive. Using the first data drive to
initialize the check data saves doing the initialization as a
separate step followed by updating it with the first data drive’s
data. In addition to the first data drive, the first check drive is
also handled specially since it is a parity drive, so its check
data can be initialized to the first data drive’s data directly
without needing the Parallel Lookup Multiplier.

In step 530, the first middle loop is called, in which the
remainder of the check drives (that is, the non-parity check
drives) have their check data initialized by the first data
drive’s data. In this case, there is a corresponding factor (that
varies with each check drive) that needs to be multiplied with
each of the first data drive’s data bytes. This is handled by
calling the Parallel Lookup Multiplier for each non-parity
check drive.

In step 540, the second middle loop is called, which pro-
cesses the other data drives’ corresponding 64-byte chunks of
data. As with the first data drive, each of the other data drives
is processed separately, loading the respective 64 bytes of
data into four registers (preserved across calls to the Parallel
Lookup Multiplier). In addition, since the first check drive is
the parity drive, its check data can be updated by directly
adding these 64 bytes to it (using the Parallel Adder) before
handling the non-parity check drives.

In step 550, the inner loop is called for the next data drive.
In the inner loop (as with the first middle loop), each of the
non-parity check drives is associated with a corresponding
factor for the particular data drive. The factor is multiplied
with each of the next data drive’s data bytes using the Parallel
Lookup Multiplier, and the results added to the check drive’s
check data.

Another such sequencer (Sequencer 2) can be used to
reconstruct the lost data from the surviving data (using Algo-
rithm 2). While the same column-by-column and row-by-row
data access approaches are possible, as well as the same
choices for handling the check drives, Algorithm 2 adds
another dimension of complexity because of the four separate
steps and whether to: (i) do the steps completely serially or (ii)
do some of the steps concurrently on the same data. For
example, step 1 (surviving check data generation) and step 4
(lost check data regeneration) can be done concurrently on the
same data to reduce or minimize the number of surviving
original data accesses from memory.

Empirical results show that method (2)(b)(ii), that is, row-
by-row data access on all of the check drives and for both
surviving check data generation and lost check data regen-
eration between data accesses performs best with the Parallel
Lookup Multiplier when reconstructing lost data using Algo-
rithm 2. Again, this may be due to the apparent minimization
of the number of memory accesses (namely, one) of each
chunk of surviving original data X to reconstruct the lost data
and the absence of memory accesses of reconstructed lost
original data Y when regenerating the lost check data. This
embodiment of Sequencer 1 is described in more detail with
reference to FIGS. 5-7.

FIGS. 5-7 show an exemplary method 600 for sequencing
the Parallel Lookup Multiplier to perform the lost data recon-
struction according to an embodiment of the present inven-
tion.

10

15

20

25

30

35

40

45

50

55

60

65

22

Referring to FIG. 5, in step 610, the Sequencer 2 is called.
Sequencer 2 has many similarities with the embodiment of
Sequencer 1 illustrated in FIG. 4. For instance, Sequencer 2
processes the data drive data in 64-byte chunks like
Sequencer 1. Sequencer 2 is more complex, however, in that
only some of the data drive data is surviving; the rest has to be
reconstructed. In addition, lost check data needs to be regen-
erated. Like Sequencer 1, Sequencer 2 does these operations
in such a way as to minimize memory accesses of the data
drive data (by loading the data once and calling the Parallel
Lookup Multiplier multiple times). Assume for ease of
description that there is at least one surviving data drive; the
case of no surviving data drives is handled a little differently,
but not significantly different. In addition, recall from above
that the driving formula behind data reconstruction is Y=B~
1x(W-AxX), where Y is the lost original data, B™' is the
solution matrix, W is the surviving check data, A is the partial
check data encoding matrix (for the surviving check drives
and the surviving data drives), and X is the surviving original
data.

In step 620, the outer loop processes the next 64-byte
chunk of data for each of the drives. Like Sequencer 1, the first
surviving data drive is again handled specially since the par-
tial check data AxX has to be initialized for each surviving
check drive.

In step 630, the first middle loop is called, in which the
partial check data AxX is initialized for each surviving check
drive based on the first surviving data drive’s 64 bytes of data.
In this case, the Parallel Lookup Multiplier is called for each
surviving check drive with the corresponding factor (from A)
for the first surviving data drive.

In step 640, the second middle loop is called, in which the
lost check data is initialized for each failed check drive. Using
the same 64 bytes of the first surviving data drive (preserved
across the calls to Parallel Lookup Multiplier in step 630), the
Parallel Lookup Multiplier is again called, this time to initial-
ize each of the failed check drive’s check data to the corre-
sponding component from the first surviving data drive. This
completes the computations involving the first surviving data
drive’s 64 bytes of data, which were fetched with one access
from main memory and preserved in the same four registers
across steps 630 and 640.

Continuing with FIG. 6, in step 650, the third middle loop
is called, which processes the other surviving data drives’
corresponding 64-byte chunks of data. As with the first sur-
viving data drive, each of the other surviving data drives is
processed separately, loading the respective 64 bytes of data
into four registers (preserved across calls to the Parallel
Lookup Multiplier).

In step 660, the first inner loop is called, in which the partial
check data AxX is updated for each surviving check drive
based on the next surviving data drive’s 64 bytes of data. In
this case, the Parallel Lookup Multiplier is called for each
surviving check drive with the corresponding factor (from A)
for the next surviving data drive.

In step 670, the second inner loop is called, in which the
lost check data is updated for each failed check drive. Using
the same 64 bytes of the next surviving data drive (preserved
across the calls to Parallel Lookup Multiplier in step 660), the
Parallel Lookup Multiplier is again called, this time to update
each of the failed check drive’s check data by the correspond-
ing component from the next surviving data drive. This com-
pletes the computations involving the next surviving data
drive’s 64 bytes of data, which were fetched with one access
from main memory and preserved in the same four registers
across steps 660 and 670.

US 9,258,014 B2

23

Next, in step 680, the computation of the partial check data
AxX is complete, so the surviving check data W is added to
this result (recall that W-AxX is equivalent to W+AxX in
binary Galois Field arithmetic). This is done by the fourth
middle loop, which for each surviving check drive adds the
corresponding 64-byte component of surviving check data W
to the (surviving) partial check data AxX (using the Parallel
Adder) to produce the (lost) partial check data W-AxX.

Continuing with FIG. 7, in step 690, the fitth middle loop is
called, which performs the two dimensional matrix multipli-
cation B~'x(W-AxX) to produce the lost original dataY. The
calculation is performed one row at a time, for a total of F
rows, initializing the row to the first term of the corresponding
linear combination of the solution matrix B~" and the lost
partial check data W-AxX (using the Parallel Lookup Mul-
tiplier).

In step 700, the third inner loop is called, which completes
the remaining F-1 terms of the corresponding linear combi-
nation (using the Parallel Lookup Multiplier on each term)
from the fitth middle loop in step 690 and updates the running
calculation (using the Parallel Adder) of the next row of
B~!x(W-AxX). This completes the next row (and recon-
structs the corresponding failed data drive’s lost data) of lost
original data Y, which can then be stored at an appropriate
location.

In step 710, the fourth inner loop is called, in which the lost
check data is updated for each failed check drive by the newly
reconstructed lost data for the next failed data drive. Using the
same 64 bytes of the next reconstructed lost data (preserved
across calls to the Parallel Lookup Multiplier), the Parallel
Lookup Multiplier is called to update each of the failed check
drives’ check data by the corresponding component from the
next failed data drive. This completes the computations
involving the next failed data drive’s 64 bytes of recon-
structed data, which were performed as soon as the data was
reconstructed and without being stored and retrieved from
main memory.

Finally, in step 720, the sixth middle loop is called. The lost
check data has been regenerated, so in this step, the newly
regenerated check data is stored at an appropriate location (if
desired).

Aspects of the present invention can be also realized in
other environments, such as two-byte quantities, each such
two-byte quantity capable of taking on 2'°=65,536 possible
values, by using similar constructs (scaled accordingly) to
those presented here. Such extensions would be readily
apparent to one of ordinary skill in the art, so their details will
be omitted for brevity of description.

Exemplary techniques and methods for doing the Galois
field manipulation and other mathematics behind RAID error
correcting codes are described in Appendix A, which contains
a paper “Information Dispersal Matrices for RAID Error
Correcting Codes” prepared for the present application.
Multi-Core Considerations

What follows is an exemplary embodiment for optimizing
or improving the performance of multi-core architecture sys-
tems when implementing the described erasure coding sys-
tem routines. In multi-core architecture systems, each proces-
sor die is divided into multiple CPU cores, each with their
own local caches, together with a memory (bus) interface and
possible on-die cache to interface with a shared memory with
other processor dies.

FIG. 8 illustrates a multi-core architecture system 100 hav-
ing two processor dies 110 (namely, Die 0 and Die 1).

Referring to FIG. 8, each die 110 includes four central
processing units (CPUs or cores) 120 each having a local level
1 (LL1) cache. Each core 120 may have separate functional

10

15

20

25

30

35

40

45

50

55

60

65

24

units, for example, an x86 execution unit (for traditional
instructions) and a SSE execution unit (for software designed
for the newer SSE instruction set). An example application of
these function units is that the x86 execution unit can be used
for the RAID control logic software while the SSE execution
unit can be used for the GF operation software. Each die 110
alsohas alevel 2 (L.2) cache/memory bus interface 130 shared
between the four cores 120. Main memory 140, in turn, is
shared between the two dies 110, and is connected to the
input/output (I/O) controllers 150 that access external devices
such as disk drives or other non-volatile storage devices via
interfaces such as Peripheral Component Interconnect (PCI).

Redundant array of independent disks (RAID) controller
processing can be described as a series of states or functions.
These states may include: (1) Command Processing, to vali-
date and schedule a host request (for example, to load or store
data from disk storage); (2) Command Translation and Sub-
mission, to translate the host request into multiple disk
requests and to pass the requests to the physical disks; (3)
Error Correction, to generate check data and reconstruct lost
data when some disks are not functioning correctly; and (4)
Request Completion, to move data from internal buffers to
requestor buffers. Note that the final state, Request Comple-
tion, may only be needed for a RAID controller that supports
caching, and can be avoided in a cacheless design.

Parallelism is achieved in the embodiment of FIG. 8 by
assigning different cores 120 to different tasks. For example,
some of the cores 120 can be “command cores,” that is,
assigned to the I/O operations, which includes reading and
storing the data and check bytes to and from memory 140 and
the disk drives via the I/O interface 150. Others of the cores
120 can be “data cores,” and assigned to the GF operations,
that is, generating the check data from the original data,
reconstructing the lost data from the surviving data, etc.,
including the Parallel Lookup Multiplier and the sequencers
described above. For example, in exemplary embodiments, a
scheduler can be used to divide the original data D into
corresponding portions of each block, which can then be
processed independently by different cores 120 for applica-
tions such as check data generation and lost data reconstruc-
tion.

One of the benefits of this data core/command core subdi-
vision of processing is ensuring that different code will be
executed in different cores 120 (that is, command code in
command cores, and data code in data cores). This improves
the performance of the associated L1 cache in each core 120,
and avoids the “pollution” of these caches with code that is
less frequently executed. In addition, empirical results show
that the dies 110 perform best when only one core 120 on each
die 110 does the GF operations (i.e., Sequencer 1 or
Sequencer 2, with corresponding calls to Parallel Lookup
Multiplier) and the other cores 120 do the I/O operations. This
helps localize the Parallel Lookup Multiplier code and asso-
ciated data to a single core 120 and not compete with other
cores 120, while allowing the other cores 120 to keep the data
moving between memory 140 and the disk drives via the I/O
interface 150.

Embodiments of the present invention yield scalable, high
performance RAID systems capable of outperforming other
systems, and at much lower cost, due to the use of high
volume commodity components that are leveraged to achieve
the result. This combination can be achieved by utilizing the
mathematical techniques and code optimizations described
elsewhere in this application with careful placement of the
resulting code on specific processing cores. Embodiments
can also be implemented on fewer resources, such as single-

US 9,258,014 B2

25

core dies and/or single-die systems, with decreased parallel-
ism and performance optimization.

The process of subdividing and assigning individual cores
120 and/or dies 110 to inherently parallelizable tasks will
result in a performance benefit. For example, on a Linux
system, software may be organized into “threads,” and
threads may be assigned to specific CPUs and memory sys-
tems via the kthread_bind function when the thread is created.
Creating separate threads to process the GF arithmetic allows
parallel computations to take place, which multiplies the per-
formance of the system.

Further, creating multiple threads for command processing
allows for fully overlapped execution of the command pro-
cessing states. One way to accomplish this is to number each
command, then use the arithmetic MOD function (% in C
language) to choose a separate thread for each command.
Another technique is to subdivide the data processing portion
of'each command into multiple components, and assign each
component to a separate thread.

FIG. 9 shows an exemplary disk drive configuration 200
according to an embodiment of the present invention.

Referring to FIG. 9, eight disks are shown, though this
number can vary in other embodiments. The disks are divided
into three types: data drives 210, parity drive 220, and check
drives 230. The eight disks break down as three data drives
210, one parity drive 220, and four check drives 230 in the
embodiment of FIG. 9.

Each of the data drives 210 is used to hold a portion of data.
The data is distributed uniformly across the data drives 210 in
stripes, such as 192 KB stripes. For example, the data for an
application can be broken up into stripes of 192 KB, and each
of'the stripes in turn broken up into three 64 KB blocks, each
of'the three blocks being written to a different one of the three
data drives 210.

The parity drive 220 is a special type of check drive in that
the encoding of its data is a simple summation (recall that this
is exclusive OR in binary GF arithmetic) ofthe corresponding
bytes of each of the three data drives 210. That is, check data
generation (Sequencer 1) or regeneration (Sequencer 2) can
be performed for the parity drive 220 using the Parallel Adder
(and not the Parallel Lookup Multiplier). Accordingly, the
check data for the parity drive 220 is relatively straightfor-
ward to build. Likewise, when one of the data drives 210 no
longer functions correctly, the parity drive 220 can be used to
reconstruct the lost data by adding (same as subtracting in
binary GF arithmetic) the corresponding bytes from each of
the two remaining data drives 210. Thus, a single drive failure
of'one of the data drives 210 is very straightforward to handle
when the parity drive 220 is available (no Parallel Lookup
Multiplier). Accordingly, the parity drive 220 can replace
much of the GF multiplication operations with GF addition
for both check data generation and lost data reconstruction.

Each of the check drives 230 contains a linear combination
of'the corresponding bytes of each of the data drives 210. The
linear combination is different for each check drive 230, butin
general is represented by a summation of different multiples
of each of the corresponding bytes of the data drives 210
(again, all arithmetic being GF arithmetic). For example, for
the first check drive 230, each of the bytes of the first data
drive 210 could be multiplied by 4, each of the bytes of the
second data drive 210 by 3, and each of the bytes of the third
data drive 210 by 6, then the corresponding products for each
of'the corresponding bytes could be added to produce the first
check drive data. Similar linear combinations could be used to
produce the check drive data for the other check drives 230.
The specifics of which multiples for which check drive are
explained in Appendix A.

10

15

20

25

30

35

40

45

50

55

60

65

26

With the addition of the parity drive 220 and check drives
230, eight drives are used in the RAID system 200 of FIG. 9.
Accordingly, each 192 KB of original data is stored as 512 KB
(i.e., eight blocks of 64 KB) of (original plus check) data.
Such a system 200, however, is capable of recovering all of
the original data provided any three of these eight drives
survive. That is, the system 200 can withstand a concurrent
failure of up to any five drives and still preserve all of the
original data.

Exemplary Routines to Implement an Embodiment

The error correcting code (ECC) portion of an exemplary
embodiment of the present invention may be written in soft-
ware as, for example, four functions, which could be named
as ECClnitialize, ECCSolve, ECCGenerate, and ECCRegen-
erate. The main functions that perform work are ECCGener-
ate and ECCRegenerate. ECCGenerate generates check
codes for data that are used to recover data when a drive
suffers an outage (that is, ECCGenerate generates the check
data J from the original data D using Sequencer 1). ECCRe-
generate uses these check codes and the remaining data to
recover data after such an outage (that is, ECCRegenerate
uses the surviving check data W, the surviving original data X,
and Sequencer 2 to reconstruct the lost original data’Y while
also regenerating any of the lost check data). Prior to calling
either of these functions, ECCSolve is called to compute the
constants used for a particular configuration of data drives,
check drives, and failed drives (for example, ECCSolve
builds the solution matrix B™! together with the lists of sur-
viving and failed data and check drives). Prior to calling
ECCSolve, ECClnitialize is called to generate constant tables
used by all of the other functions (for example, ECClnitialize
builds the IDM E and the two lookup tables for the Parallel
Lookup Multiplier).

ECClnitialize

The function ECClnitialize creates constant tables that are
used by all subsequent functions. It is called once at program
initialization time. By copying or precomputing these values
up front, these constant tables can be used to replace more
time-consuming operations with simple table look-ups (such
as for the Parallel Lookup Multiplier). For example, four
tables useful for speeding up the GF arithmetic include:

1. mvct—an array of constants used to perform GF multi-
plication with the PSHUFB instruction that operates on SSE
registers (that is, the Parallel Lookup Multiplier).

2. mast—contains the master encoding matrix S (or the
Information Dispersal Matrix (IDM) E, as described in
Appendix A), or at least the nontrivial portion, such as the
check drive encoding matrix H

3. mul_tab—contains the results of all possible GF multi-
plication operations of any two operands (for example, 256x
256=65,536 bytes for all of the possible products of two
different one-byte quantities)

4. div_tab—contains the results of all possible GF division
operations of any two operands (can be similar in size to
mul_tab)

ECCSolve

The function ECCSolve creates constant tables that are
used to compute a solution for a particular configuration of
data drives, check drives, and failed drives. It is called prior to
using the functions ECCGenerate or ECCRegenerate. It
allows the user to identify a particular case of failure by
describing the logical configuration of data drives, check
drives, and failed drives. It returns the constants, tables, and
lists used to either generate check codes or regenerate data.
For example, it can return the matrix B that needs to be
inverted as well as the inverted matrix B™* (i.e., the solution
matrix).

US 9,258,014 B2

27

ECCGenerate

The function ECCGenerate is used to generate check codes
(that is, the check data matrix J) for a particular configuration
of data drives and check drives, using Sequencer 1 and the
Parallel Lookup Multiplier as described above. Prior to call-
ing ECCGenerate, ECCSolve is called to compute the appro-
priate constants for the particular configuration of data drives
and check drives, as well as the solution matrix B~L.

ECCRegenerate

The function ECCRegenerate is used to regenerate data
vectors and check code vectors for a particular configuration
of data drives and check drives (that is, reconstructing the
original data matrix D from the surviving data matrix X and
the surviving check matrix W, as well as regenerating the lost
check data from the restored original data), this time using
Sequencer 2 and the Parallel Lookup Multiplier as described
above. Prior to calling ECCRegenerate, ECCSolve is called
to compute the appropriate constants for the particular con-
figuration of data drives, check drives, and failed drives, as
well as the solution matrix B!

Exemplary Implementation Details

As discussed in Appendix A, there are two significant
sources of computational overhead in erasure code process-
ing (such as an erasure coding system used in RAID process-
ing): the computation of the solution matrix B~* for a given
failure scenario, and the byte-level processing of encoding the
check data J and reconstructing the lost data after a lost packet
(e.g., data drive failure). By reducing the solution matrix B~!
to a matrix inversion of a FxF matrix, where F is the number
of lost packets (e.g., failed drives), that portion of the com-
putational overhead is for all intents and purposes negligible
compared to the megabytes (MB), gigabytes (GB), and pos-
sibly terabytes (TB) of data that needs to be encoded into
check data or reconstructed from the surviving original and
check data. Accordingly, the remainder of this section will be
devoted to the byte-level encoding and regenerating process-
ing.

As already mentioned, certain practical simplifications can
be assumed for most implementations. By using a Galois field
of'256 entries, byte-level processing can be used for all of the
GF arithmetic. Using the master encoding matrix S described
in Appendix A, any combination of up to 127 data drives, 1
parity drive, and 128 check drives can be supported with such
a Galois field. While, in general, any combination of data
drives and check drives that adds up to 256 total drives is
possible, not all combinations provide a parity drive when
computed directly. Using the master encoding matrix S, on
the other hand, allows all such combinations (including a
parity drive) to be built (or simply indexed) from the same
such matrix. That is, the appropriate sub-matrix (including
the parity drive) can be used for configurations of less than the
maximum number of drives.

In addition, using the master encoding matrix S permits
further data drives and/or check drives can be added without
requiring the recomputing of the IDM E (unlike other pro-
posed solutions, which recompute E for every change of N or
M). Rather, additional indexing of rows and/or columns of the
master encoding matrix S will suffice. As discussed above,
the use of the parity drive can eliminate or significantly
reduce the somewhat complex GF multiplication operations
associated with the other check drives and replaces them with
simple GF addition (bitwise exclusive OR in binary Galois
fields) operations. It should be noted that master encoding
matrices with the above properties are possible for any power-
of-two number of drives 2°=N___+M, __where the maximum

max

number of data drives N, is one less than a power of two

10

15

20

25

30

40

45

50

55

60

65

28
(e.g., N,,,,,=127 or 63) and the maximum number of check
drives M, (including the parity drive) is 2-N__ .

As discussed earlier, in an exemplary embodiment of the
present invention, a modern x86 architecture is used (being
readily available and inexpensive). In particular, this archi-
tecture supports 16 XMM registers and the SSE instructions.
Each XMM register is 128 bits and is available for special
purpose processing with the SSE instructions. Each of these
XMM registers holds 16 bytes (8-bit), so four such registers
can be used to store 64 bytes of data. Thus, by using SSE
instructions (some of which work on different operand sizes,
for example, treating each of the XMM registers as contain-
ing 16 one-byte operands), 64 bytes of data can be operated at
atime using four consecutive SSE instructions (e.g., fetching
from memory, storing into memory, zeroing, adding, multi-
plying), the remaining registers being used for intermediate
results and temporary storage. With such an architecture,
several routines are useful for optimizing the byte-level per-
formance, including the Parallel Lookup Multiplier,
Sequencer 1, and Sequencer 2 discussed above.

GLOSSARY OF SOME VARIABLES

A encoding matrix (FxK), sub-matrix of T
B encoding matrix (FxF), sub-matrix of T
B~! solution matrix (FxF)

C encoded data matrix

D
((N+M)><L)=[J}

C' surviving encoded data matrix

X
(NxL)_[W}

D original data matrix (NxL)
D' permuted original data matrix

NxL)= X
wxn=[}]

E information dispersal matrix

In
(IDM)((N + M) N) = [. }

F number of failed data drives

G number of failed check drives

H check drive encoding matrix (MxN)

1 identity matrix (I,=KxK identity matrix, [,=NxN identity
matrix)

J encoded check data matrix (MxL)

K number of surviving data drives=N-F

L data block size (elements or bytes)

M number of check drives

M,,, . maximum value of M

N number of data drives

N, maximum value of N

US 9,258,014 B2

29

O zero matrix (KxF), sub-matrix of T
S master encoding matrix (M,,,,,.+N,,, .)xN,...)
T transformed IDM

Ik O
(NxN)_[A B}

W surviving check data matrix (FxL)
X surviving original data matrix (KxL)
Y lost original data matrix (FxL)

DETAILED DESCRIPTION
New

While optimal erasure codes have many applications, for
ease of description, they will be described in this application
primarily with respect to RAID applications, i.e., erasure
coding systems for the storage and retrieval of digital data
distributed across numerous storage devices (or drives),
though the present application is not limited thereto. For
further ease of description, the storage devices will be
assumed to be disk drives, though the invention is not limited
thereto. In RAID systems, the data (or original data) is broken
up into stripes, each of which includes N uniformly sized
blocks (data blocks), and the N blocks are written across N
separate drives (the data drives), one block per data drive. For
simplicity, it will be assumed that N=2 throughout. The N=1
case essentially degenerates to simple data mirroring (i.e.,
replication of data without encoding), though many of the
same general principles apply as with N=2.

In addition, for ease of description, blocks will be assumed
to be composed of L elements, each element having a fixed
size, say 8 bits or one byte. An element, such as a byte, forms
the fundamental unit of operation for the RAID processing,
but the invention is just as applicable to other size elements,
such as 16 bits (2 bytes). For simplification, unless otherwise
indicated, elements will be assumed to be one byte in size
throughout the description that follows, and the term “ele-
ment(s)” and “byte(s)” will be used synonymously. It is
understood, however, that this is only for convenience of
description, and embodiments of the invention are extendible
to any size elements (e.g., 2 bytes) as would be apparent to
one of ordinary skill in the art.

Conceptually, RAID processing takes place at the element
(e.g., byte) level, though parallel processing techniques (e.g.,
multiple cores, multiple instructions per cycle, instruction
pipelining, and wide data paths) allows vast amounts of this
processing to be done concurrently. While large block sizes L
can be chosen to take advantage of this concurrent processing,
the processing is still being done on a byte basis across each
stripe (that is, each byte at the same byte position in each
stripe). Accordingly, errors and failures can take place on
units smaller than blocks, including bytes, and the same prin-
ciples of being able to recover any lost or corrupted data from
any N corresponding surviving units (including N surviving
bytes at the same corresponding byte positions) across the
stripes still apply.

The N data blocks from each stripe are combined using
arithmetic operations (as described in the Benefit Application
and included above) in M different ways to produce M blocks
of check data (check blocks), and the M check blocks written
across M drives (the check drives) separate from the N data
drives, one block per check drive. It should be noted that the
assignment of data and check blocks to the drives does not

10

15

20

25

30

40

45

50

55

60

65

30

have to remain the same between stripes, provided each of the
N+M data and check blocks goes to a different one of the
N+M drives. For ease of description, however, the assignment
will be assumed to be the same throughout this disclosure. It
should also be noted that some or all of the N data blocks can
be replaced with an equal number of additional check blocks.
That is, provided there are N+M total data and check blocks,
the N blocks of original data are reconstructable from any
combination of N of the N+M total data and check blocks.
Further, with the original data reconstructed, any of the check
blocks can be regenerated. Thus, given any combination of
N+M total data and check blocks, any N such blocks can be
used at any point to reconstruct or regenerate the other M
blocks.

In other words, conceptually, there is little difference
between an original data block and a check block, except
perhaps to an application that needs to process the original
data. Since the RAID storage system would not likely have
need to process the original data, the data could be all stored
as (encoded) check blocks. That is, the data could instead be
stored as N+M total check blocks, as the system could still
reconstruct the original data from any N of them. This simple
example demonstrates the ability of check blocks to both
encode (for example, encrypt) and authenticate data.

For example, without knowledge of the algorithm and the
multiplicative factors used to encode the check blocks—that
is, the check drive encoding matrix (or check matrix) as
defined in the Benefit Application and included above—the
encoded data can appear to be encrypted to an observer of the
data. Using a check matrix that is as least NxN, and storing
the original data as check data rather than original data,
should suffice to encrypt the original data to an unaware
observer. In a similar fashion, with knowledge of the algo-
rithm and the check matrix, data can have check blocks cre-
ated for purposes of authentication. That is, receivers of the
data and check blocks can regenerate the check blocks to
verify the authenticity of the data bytes. Encryption and
authentication can be performed together by using, for
example, a check matrix of size (N+M)x(N+M) to create N
encrypted data blocks and M check blocks for authentication.
For purposes of the remainder of this disclosure, however, it
will be assumed that the N blocks of original data are kept in
their original (unencoded) form at the different memory and
storage hierarchies, though the invention is not limited
thereto.

These combinations and arithmetic operations of data
blocks into check blocks can take place, for example, when
new (or changed) data is written to (or back to) disk. Accord-
ingly, each of the N+M drives (data drives and check drives)
stores a similar amount of data, namely one block for each
stripe. As the processing of multiple stripes is conceptually
similar to the processing of one stripe (only processing mul-
tiple blocks per drive instead of one), it will be further
assumed for simplification that the data being stored or
retrieved represents one stripe of original data unless other-
wise indicated. It will also be assumed that the block size L is
sufficiently large that the data can be consistently divided
across each block to produce subsets of the data (for example,
64 byte subsets) that include respective portions of the blocks
(for efficient concurrent processing by different processing
units).

The data blocks (and, in some cases, the check blocks) for
each stripe can be assumed to be buffered within a level of the
memory and storage hierarchy of the computer implementing
the erasure code. For ease of description and simplification, it
will be assumed that the caching takes place in stripe size
units, where the stripe includes at least the data blocks along

US 9,258,014 B2

31

with any check blocks being kept or maintained with the data
blocks at the corresponding level of the memory or storage
hierarchy. One such exemplary level will be referred to as the
RAID cache level. See FIG. 10 for an exemplary memory and
storage hierarchy system 1000 according to an embodiment
of the present invention. In FIG. 10, the memory and storage
hierarchy system 1000 includes disk drives 1010 (for
example, five disk drives, labeled disk 1 through disk 5), a
storage subsystem controller 1020 for transferring data to and
from the different disk drives 1010, a RAID cache 1030 for
maintaining recently accessed data in stripes, and a CPU and
memory hierarchy 1040 for processing the data by a central
processing unit (CPU) and a memory hierarchy that can
include various hardware memory levels including processor
cache and volatile memory, such as random access memory
(RAM).

The RAID cache 1030 might only keep the N data blocks
for each stripe resident in the RAID cache 1030. Assuming
the corresponding N data drives are functioning, the RAID
cache 1030 can build each stripe from the N data drives,
process the stripe internally within the CPU and memory
hierarchy 1040, and then write out any changes to the N data
blocks, along with generating and writing out the correspond-
ing changes to the M check blocks, at the appropriate time
(e.g., when the stripe “ages out” of the RAID cache). By
keeping the stripe in the RAID cache 1030, details such as
keeping the check blocks up to date on the check drives,
handling failing drives, etc., can be postponed until a more
opportune moment presents itself to the RAID cache 1030.
Thus, to the RAID cache 1030, the fundamental unit of
memory or storage is the stripe, though the RAID cache 1030
may transfer data to the CPU and memory hierarchy 1040 as
well as to the storage subsystem 1020 in units of blocks.

In other implementations, the RAID cache is a “write-
through” cache. That is, when a change is written to one of the
blocks in the RAID cache, the corresponding check blocks
are updated and the contents of all of the updated blocks are
written to their respective drives.

According to embodiments of the present invention, check
blocks are also maintained in the RAID cache 1030 for each
stripe. The number of such check blocks can be the same, less
than, or even more than the number of check blocks main-
tained in the check drives. Erasure encodings, such as those
described in the Benefit Application and included above, can
support up to 256 total (data plus check) drives for byte-size
elements (and far more drives for larger size elements, such as
65.536 drives for two-byte elements). Accordingly, the inter-
nal stripe size (i.e., number of data and check blocks main-
tained in the RAID cache 1030 for each stripe) can be as large
as 256 blocks, even if the external stripe size (i.e., number of
data and check blocks maintained in the disks) is consider-
ably smaller. As such, concepts such as “stripe size” and
“check blocks” may be used throughout this disclosure to
refer to either (or both of) “internal stripe size” (i.e., RAID
cache stripe size) or “external stripe size” (i.e., data drives
plus check drives stripe size), and likewise for “internal check
blocks” or “external check blocks,” depending on the context.
Similarly, an “internal stripe” can refer to all the data and
check blocks that contribute to the internal stripe size, while
an “external stripe” can refer to all the data and check blocks
that contribute to the external stripe size.

For example, a system may have three data drives and five
check drives in a RAID configuration. Thus, the external
stripe size is eight blocks, namely three data blocks plus five
check blocks (that is, five external check blocks) per stripe of
data. According to an embodiment of the present invention,
the RAID cache may maintain the contents of two of the five

40

45

55

32

check drives (as well as all of the data drives) for each stripe.
Here, the internal stripe size is five blocks, namely the three
data blocks and two of the check blocks (that is, two internal
check blocks). In another embodiment, the internal stripe size
is eight blocks, that is, the same as the external stripe size. In
yet another embodiment, the internal stripe size is 11 blocks,
that is, the three data blocks and eight check blocks. Accord-
ingly, internal stripes can be full or proper subsets of the
external stripes and vice versa, the external stripes can be full
or proper subsets of the internal stripes. It should be noted that
internal check blocks can also be used to speed up or replace
the step of generating the check blocks when the stripe needs
to be written to (or back to) disk. However, the present inven-
tion is not limited thereto, and in other embodiments, differ-
ent check matrices may be used at different levels of the
storage hierarchy.

By maintaining internal check blocks, the RAID cache can
also take advantage of the check blocks to detect and possibly
correct errors (e.g., silent data corruptions, or SDCs) of the
different memory and storage hierarchy levels. Normally, itis
assumed that all data is valid, both within the computing
system and throughout any storage hierarchy. While RAID
drives (specifically, the check blocks) can handle situations
where entire drives fail or are otherwise inaccessible, they can
also do data verification and correction of what would other-
wise be assumed to be valid data (that is, data that may have
experienced one or more SDCs).

Internal and Multi-Level ECC

While the above discussion focuses on internal check bytes
that, when stored on disk, are spread across multiple check
drives, it is also possible to store such internal check bytes on
the same drive, or a combination of the same drive and other
(check) drives, such as in a hierarchical fashion over multiple
levels. For example, suppose data and check bytes are to be
arranged on a 24-drive system. In a first embodiment, the 24
drives can be divided into 21 data drives and 3 check drives.
Thus, 21/24=87.5% of the system is available for data bytes,
which means 12.5% of the system is used for check bytes. It
also means that three check bytes are available for each data
byte, in a single level.

In a second embodiment, by contrast, the same 24 drives
are partitioned into 22 data drives and 2 check drives, provid-
ing two check bytes for each data byte in a standard RAID
configuration. Thus, 22/24=91.7% of the drives are available
for data, which means 8.3% of the drives are used for (stan-
dard RAID) check bytes. In addition, on each data drive,
suppose the data is organized into 512-byte sectors. 64 such
sectors (i.e., 32 KB of data bytes) can be grouped in a manner
similar to 64 separate drives for RAID processing, and 2
check sectors (i.e., 1 KB of check bytes) created to provide
internal ECC within the drive. That is, each of the sectors can
be thought of as a data block, with two check blocks (sectors)
being created to provide ECC protection as with the standard
RAID processing, only using internal sectors instead of exter-
nal blocks. This provides an additional two check bytes for
each data byte, with these check bytes being computed and
used with the same hardware or software used to process the
standard RAID processing Thus, 64/66=97.0% of the drive is
available for data bytes, which means 3.0% of the drive is
used for check bytes.

Overall, in the second embodiment, there are four check
bytes available for each data byte (two bytes within the drive,
shared among 64 sectors, and two bytes outside the drive,
shared among 22 data drives) in a two-level scheme of two
bytes in each level. Further, the total data byte storage avail-
able in the second embodiment is (22/24)x(64/66)=8/
9=88.9%, which means only 11.1% of the storage is devoted

US 9,258,014 B2

33

to check bytes. This compares favorably to the 87.5% data
byte storage (12.5% check byte storage) of the first embodi-
ment. In addition, the second embodiment provides four
check bytes for each data byte, compared to only three in the
first embodiment. Further, in the second embodiment, within
each data drive, situations such as an unrecoverable read error
(URE) of an individual sector can be resolved within the drive
by using the check sectors to reconstruct the URE data, thus
avoiding reading all the other 23 drives to resolve the URE as
would be needed in the first embodiment.

In still other embodiments, the above multi-level approach
is extended to more than two levels. For example, in a third
embodiment, a third level can be added by grouping four such
24-drive systems (“subsystems”) as described in the second
embodiment into a 96-drive system with 4 additional check
drives, for a total of 100 drives. The total data byte storage
available in the third embodiment is then (22/24)x(64/66)x
(96/100)=64/75=85.3%, which means only 14.7% ofthe stor-
age is for check bytes, yet provides eight check bytes for each
data byte in three levels of two check bytes, two check bytes,
and four check bytes. Thus, in the third embodiment, not only
are the single drive situations (e.g., URE’s) correctable within
each drive, but more extensive situations (such as a failed
drive) are correctable within a 24-drive subsystem (using the
corresponding two check drives for the subsystem) and with-
out having to read all the other 99 drives in the system.
Consistency and (Consistency) Distance

To appreciate the dual-purpose concept described earlier
(i.e., data regeneration when known drives fail versus error
detection/correction when unknown bytes become cor-
rupted), data is normally stored or maintained in a consistent
state (or at least what is believed to be a consistent state). In a
consistent state, there are no apparent SDCs, based on the
available check bytes or blocks to verify the other bytes. That
is, with consistent data and check bytes, regenerating the
check bytes from the data bytes produces the same check
bytes as are already present. Otherwise, the data and check
bytes are inconsistent. More generally, for an N+M block
erasure code, N+M blocks are defined to be consistent if using
any N of the blocks to regenerate the other M blocks produces
the same blocks as are already present. Otherwise, the N+M
blocks are inconsistent. It should be noted that any combina-
tion of N blocks (or corresponding bytes) can be used for this
consistency check.

Thus, data blocks by themselves are assumed to be consis-
tent, for there is nothing to indicate otherwise. Accordingly,
without check blocks, SDCs can take place without detection,
for N data blocks by themselves are always assumed to be in
a consistent state. While erasure codes such as those used for
RAID storage are usually described with reference to known
error locations (i.e., missing or corrupted blocks), unknown
errors (i.e., SDCs) will be defined in terms of data consistency
and inconsistency. SDCs are thus detectable (and perhaps
correctable) only to the extent that they cause the data and
check bytes to be inconsistent. Since N data blocks cannot
have any inconsistencies, N data blocks are always consis-
tent, and thus cannot have any (detectable or correctable)
SDCs.

The addition of check blocks allows for the detection and
possible correction of SDCs. In general, for each check block
added, one more SDC can be detected (with certainty) at each
byte position. Put another way, an N+M set of consistent
bytes could undergo as many as M SDCs and still not reach a
different set of N+M consistent bytes, hence up to M SDCs
can be detected with certainty.

This can also be expressed as a consistency distance, that
is, the minimum number of element (e.g., byte) corrections
needed to return a set of data and check bytes to a consistent
state. Another way of expressing this is that the consistency

10

15

20

25

30

35

40

45

50

55

60

65

34

distance of a set of data and check bytes is the Hamming
distance (in bytes) from the set of data and check bytes to the
nearest set of consistent data and check bytes. Consistent data
and check bytes are thus distance 0. N data bytes by them-
selves are also distance O (since they are consistent), or dis-
tance 1 to the next nearest other consistent set (i.e., any single
byte change also produces a consistent set). In general, N+M
consistent data and check bytes are distance 0, or distance
M+1 to the next nearest other consistent set. Inconsistent data
has a nonzero consistency distance. The larger the distance,
the more changes are needed to the individual bytes to return
it to a consistent state. The consistency distance (or just dis-
tance) thus measures the degree of consistency.

An alternate (and possibly concurrent) use of the check
bytes is to compress existing data bytes, such as in a cache.
For example, denote two sets of N data bytes D1 and D2 and
their corresponding sets of M check bytes C1 and C2. In the
trivial case where D1 and D2 are the same, it suffices to store
only one of them, such as D1, in the cache (along with each of
their check bytes C1 and C2). That is, the two sets of check
bytes C1 and C2 can be stored in the cache together with a
pointer that points to the same data, such as D1. In this
manner, the data bytes D2 do not also need to be stored, which
results in data compression.

Likewise, if, D1 and D2 differ (in bytewise comparison) by
fewer than the number of check blocks (M), that is, the Ham-
ming distance between D1 and D2 is less than M, it may be
that the combination of N data bytes D1 and M check bytes
C2 is an inconsistent set of N+M data and check bytes that is
nonetheless correctable (as discussed in more detail below) to
the consistent set of N+M data and check bytes D2 and C2. If
s0, it suffices to store only D1, and to point C2 to D1. That is,
D2 can be compressed to a pointer to D1 only with a different
set of check bytes C2, and can be uncompressed to D2
through error correction techniques as discussed more fully
below. In other words, some or all of the error correcting
capability can be exchanged for a data compression capabil-
ity. It should be noted that this data compression can still be
combined with actual error detection and correction by, for
example, requiring D1 and D2 to differ by fewer bytes,
thereby allowing these extra bytes to detect or correct actual
errors (e.g., SDCs) thatoccurto D1, C1, or C2 over time while
still being able to recover D2.

Further compression may also be possible by pointing new
data to existing compressed data. That is, suppose data bytes
D1 and D2, with corresponding check bytes C1 and C2, are
stored as described above, with D1 actually being stored, C1
being stored and pointing to D1, and C2 being stored and also
pointing to D1 (the data bytes D2 being reconstructable from
doing error correction on the combination of data bytes D1
and check bytes C2). Now let new data bytes D3 with corre-
sponding check bytes C3 be added to the cache. D3 may be
sufficiently far from D1 (for example, have a Hamming dis-
tance from D1 that is =M) that the data bytes D3 cannot be
recovered from the combination of the data bytes D1 and
check bytes C3.

However, D3 may be sufficiently close to D2 (for example,
have a Hamming distance from D2 that is <M/2) that the data
bytes D3 can be recovered from error correcting the combi-
nation of data bytes D2 and check bytes C3. In this case, D3
would not have to be stored in the cache. Rather, the check
bytes C3 are stored in the cache, only pointing to the check
bytes C2. In this fashion, the data bytes D3 could be recon-
structed by first reconstructing the data bytes D2 as described
above, and then performing error correction on the recovered
data bytes D2 using the check bytes C3. In this sense, the
check bytes C3 indirectly point to the data bytes D1 by point-
ing to the check bytes C2, which directly point to the data
bytes D1.

US 9,258,014 B2

35

This process of data compression could thus potentially be
extended several levels, each level of indirection adding
another error correction operation to recover the appropriate
intermediate data bytes until eventually the desired data bytes
are recovered. In some embodiments, the amount of indirec-
tion (number of error correction operations) could be limited
(say, to no more than a fixed number of compressed sets of
intermediate data bytes) to lessen the potential computational
complexity of decompressing the data from existing com-
pressed sets of data bytes.

Pure detection of SDCs can thus be reduced to testing if the
data and check bytes are consistent (i.e., has a distance greater
than 0). Pure correction of SDCs can be reduced to replacing
the data and check bytes with the closest consistent set of data
and check bytes (that is, the set requiring the fewest number of
byte changes), provided there is only one such closest set.
Pure compression of data bytes can be accomplished by
replacing similar combinations of data bytes with only one
such set, together with corresponding sets of check bytes
corresponding to their original data. Combinations of detec-
tion, correction, and compression are also possible, as
described later.

Random SDCs usually make the data and check bytes more
inconsistent (i.e., increases its distance), but only to a certain
extent, and no more than distance M. This is because any
inconsistent set of N+M data and check bytes is at most M
corrections away (i.e., distance M) from a consistent set of
data and check bytes. That is, any N of the data and check
bytes are consistent (i.e., distance 0) and can be used to
generate the other M bytes, thus producing a set of N+M
consistent data and check bytes with at most M byte correc-
tions (i.e., distance at most M). There are

N+M N+M
(N] h (M]
such possible subsets (different sets of corrections of at most
M bytes) and thus, while M SDCs is detectable, it is (gener-
ally) not possible to correct them (for example, without know-
ing which of the numerous sets of corrections should be
applied).

For ease of description, as described hereinafter, inconsis-
tent data and check bytes are correctable if and only if there is
aunique solution (that is, a unique set of byte changes) having
a fewest number of corrections that returns the inconsistent
data and check bytes to a consistent state (i.e., only one
solution satisfying its consistency distance). Any consistent
set of N+M data and check bytes is distance M+1 from any
nearest other consistent set of data and check bytes. That is,
the addition of M check blocks separates the consistent sets of
data and check bytes by at least M+1 SDCs. Thus, any incon-

sistent set of data and check bytes having a combination of
fewer than

M+1
2

SDCs (i.e., less man or equal to

M

2

SDCs) is guaranteed to be correctable, as such an inconsistent
set of data and check bytes is more than distance

M+1
2

from any nearest other set of consistent data and check bytes.
However, it may be possible to correct up to M-1 SDCs, if

10

20

25

30

35

40

45

50

55

60

65

36

there is only one set of consistent data that is distance M-1 or
less from the inconsistent data and check bytes.

For example, ifa set of data and check bytes is inconsistent,
but can be made consistent in as few as two corrections (i.e.,
distance 2), then two SDCs are detectable. Further, if there is
only one such combination of two data and check bytes that
can be corrected to return the set to a consistent state, then
those two data and check bytes (or rather, their SDCs) are
correctable. In general, an N+M block erasure code has the
capability of detecting up to M SDCs (i.e., its distance is at
most M) at each byte position, and the possibility of correct-
ing up to M-1 SDCs. However, the maximum number of
correctable SDCs is data dependent, and can be as few as

M
2

(rounded down), that is,

H

For a more practical example, suppose two of the check
blocks are maintained internally in the RAID cache (that is,
the internal stripe size is N+2 blocks). Then a simple consis-
tency check of the N+2 blocks can be to use the N data blocks
to regenerate the two check blocks, and then compare these
two regenerated check blocks with the two existing check
blocks. If there are any mismatches, then the internal stripe is
inconsistent, that is, one or more SDCs have been detected. In
this case, it may be possible to use the existing check blocks
in the RAID cache to detect two SDCs or to correct one SDC,
at each byte position, as will now be explained.

FIG. 11 illustrates an exemplary RAID cache 1030 accord-
ing to an embodiment of the present invention. The cache is
depicted as a two dimensional structure, with rows corre-
sponding to stripes and columns corresponding to disk drives
(including data drives and check drives). In this RAID cache
1030, the internal stripe size is five blocks, namely three data
blocks and two check blocks. By incorporating two check
blocks into each internal stripe, the RAID cache 1030 has
dedicated 40% ofits cache space to holding check data, which
means that the RAID cache 1030 holds 40% fewer stripes
compared to a comparable RAID cache that stores no check
blocks in its internal stripes.

The check blocks do provide benefits, though. In addition
to being able to write these check blocks to check drives when
the stripe needs to be written to disk (that is, without a sepa-
rate check data generation step), these check blocks provide,
for example, error detection and correction capability (and/or
encryption, authentication, and/or compression capability).
These blocks represent an erasure code and thus, should any
two of them become corrupted, they can be reconstructed or
regenerated from the other three. However, as already men-
tioned, for a RAID cache (i.e., internal) level of the memory
or storage hierarchy, that property also applies to the byte
level. That is, for a given stripe, in this example, there can be
up to 2xL corruptions, i.e., two per corresponding byte posi-
tion across each of the five blocks. Accordingly, for simplifi-
cation, at the RAID cache level, the data may hereinafter be
thought of as individual corresponding bytes across each
(internal) stripe. That is, the data will be processed at the byte
level and not the block level. Consistency and distance will
also be defined across the same boundaries.

US 9,258,014 B2

37

With this in mind, FIG. 12 illustrates an exemplary method
1200 for consistency checking a set of N+M original bytes in
an erasure code according to an exemplary embodiment of the
present invention. Instep 1210, a check is made to see if M=0.
If so, the processing proceeds to step 1220, where the data is
assumed to be consistent since there is no way to tell other-
wise. Otherwise, M=1, so processing proceeds to step 1230,
where a (proper) subset of N bytes is chosen. Any N of the
original bytes can be chosen. Since the data is part of an
erasure code, the N chosen bytes can be used in step 1240 to
regenerate all N+M original bytes.

Next, in step 1250, the regenerated bytes are compared to
the original bytes. If this byte wise comparison is the same
across all N+M byte positions, then the regenerated data
matches the original data, so processing proceeds to step
1260, and the data is consistent. Otherwise, the regenerated
data is different from the original data, so there must be an
inconsistency in the original data, so processing proceeds to
step 1270, and the data is inconsistent.

As a simple example, if the N+M bytes include N data
bytes and M check bytes, the consistency checking can be
accomplished by regenerating the M check bytes from the N
data bytes. As such, another term for consistency checking is
check data regeneration verification. In addition, in place of
(or in addition to) error detection, the M check bytes can be
used for data authentication, allowing a sender and receiver
that have knowledge of the check matrix to generate authen-
tication bytes to verify the authenticity of a message. Authen-
tication would take place if the received N+M data and check
(authentication) bytes were consistent.

Error Detection and Correction

Returning to the example arrangement of FIG. 11, if an
SDC occurs at a byte position in one block (say, the first data
block), the data at the corresponding same byte positions in
the other four blocks (that is, the second and third data blocks,
and the first and second check blocks) can be used to detect
the error and possibly correct it. Detection would take place
when it is discovered that any combination of four or five
blocks including the first data block is inconsistent at that byte
position. Likewise, correction could take place when it is
realized that the data at that byte position is consistent across
the one combination of four blocks including the second and
third data blocks, and the first and second check blocks. Using
any three of the four bytes in the consistent combination of
blocks to reconstruct the corrupted byte in the first data block
will then yield consistent data across all five blocks.

Instead of detecting and correcting one error in a byte
position across the five blocks, the two check blocks can
instead be used to detect (up to) any two errors in the same
byte position. Generally, for every check block added, each
byte position can detect up to one more error, while for every
two check blocks added, each byte position can detect up to
two more errors or, instead, each byte position can correct up
to one more error. Thus, error correction sometimes involves
a tradeoff: in general, for every byte of error correction capa-
bility added (or at least error correction with certainty), one
byte of error detection capability is removed. It should be
noted that some error correction might still be possible using
fewer than two check blocks per byte, as will be described
later.

The choice of how to apportion the detection and correc-
tion capability should be made ahead of time, as it makes
assumptions on the maximum number of SDCs that may be
present. When the number of SDCs exceeds the assumed
maximum, the results can be unpredictable (i.e., the SDCs
may still be detectable, possibly even correctable, but this
cannot be guaranteed; instead, the SDCs may go undetected,

20

30

35

40

45

50

55

60

65

38

or the wrong bytes may be corrected). Thus, with two check
blocks, the choice can be made up front whether to be able to
either (1) detect up to two errors, or (2) correct up to one error.
Likewise, with three check blocks, the choice can be made up
front to be able to either (1) detect up to three errors, or (2)
correct up to one error or detect two errors. It should be noted
that with choice (2), the outcome, namely correct up to one
error or detect two errors, depends on whether there is at most
one error or whether there are two errors, respectively, in the
data. It should also be noted that with choice (2), it still may
also be possible to correct two errors, but this cannot be
guaranteed.

Likewise, with four check blocks, the choice can be made
up front to be able to (1) detect up to four errors, (2) correct up
to one error or detect two to three errors, or (3) correct up to
two errors. It should be noted that correction of an error
implicitly requires the detection of that error, so the term
“correct” will be used synonymously with “detect and cor-
rect” throughout this disclosure. In general, for any M, the
choice can be made up front to be able to do one of

7]+

possible capabilities: (1) detect up to M errors, (2) correct up
to one error or detect two to M-1 errors, (3) correct up to two
errors or detect three to M-2 errors, . . ., or

171+1)

correct up to

3]

errors or detect

M
ki
errors (that is,

M
2

rounded up), as will be described further below with refer-
ence to FIG. 13. As before, it still may be possible to correct
up to M-1 errors, but this cannot be guaranteed, as will be
described further below with reference to FIGS. 14-15.

FIG. 13 illustrates an exemplary method 1300 for detecting
and correcting errors according to an embodiment of the
present invention.

Referring to FIG. 13, method 1300 assumes that there are
N+M bytes distributed at the same byte position across all
N+M blocks of a stripe. In step 1310, a check is made to see
if the N+M bytes are consistent (using, for example, the
consistency checking method 1200 of FIG. 12). If so, then
processing proceeds to step 1320, and no errors have been
detected. If not, then one or more SDCs have been detected,

US 9,258,014 B2

39

s0 processing proceeds to step 1330, where upper bounds on
the maximum number of correctable errors C and detectable
errors M-C are determined, where C<sM-C

fie.c=[X))

as discussed above. For example, these numbers may have
been decided up front (i.e., predetermined), or they may be
determined dynamically on a case-by-base basis. Method
1300 assumes that there are no more than M-C SDCs, for
otherwise the results are unpredictable. Processing then pro-
ceeds to step 1340, where an attempt is made to correct up to
C SDCs.

In further detail, in step 1340, every subset of size N+M-C
bytes is tested for consistency (using, for example, method
1200) until a consistent subset is found. It should be noted that
there are

(wemme)=(e")

such subsets, though it may be possible to not test every one
of'them, as described later. It is guaranteed that if there are no
more than C SDCs, there will be at least one such consistent
subset. This is because at some point, a subset of size N+M-C
bytes that excludes all of the (no more than C) SDCs will be
picked. Since such a subset lacks any SDCs, it is consistent by
construction. Furthermore, since there are no more than M-C
SDCsinall N+M bytes (as assumed above), any subset of size
N+M-C bytes can have no more than M-C SDCs in it. Since
any such subset of size N+M-C bytes is also an erasure code
of N+M-C bytes, it is consistent if and only if it has no SDCs.

Ifno such consistent subset of size N+M-C bytes is found,
then processing proceeds to step 1350, where it is determined
that more than C SDCs have been detected (had there been C
or fewer SDCs, there would have been a consistent subset of
size N+M-C bytes as discussed above). However, there can
be no more than M-C SDCs (by assumption). Thus, between
C+1 and M-C SDCs have been detected.

Otherwise, one such consistent subset has been found.
Processing then proceeds to step 1360, where that subset is
used to regenerate or reconstruct the missing C bytes, at least
one of which will be different from the corresponding bytes in
the original N+M bytes (otherwise the original N+M bytes
would have been consistent), at which point up to C SDCs
have been corrected.

As can be seen, it is possible to detect more SDCs than can
be corrected. This follows from the consistency distance.
Error detection can be thought of as starting from a consistent
set of data and check bytes and injecting errors up to, but not
including, the next closest consistent set of data and check
bytes (i.e., up to distance M, as the next closest consistent set
of'data and check bytes is distance M+1). Error correction, on
the other hand, can be thought of as starting from an incon-
sistent set of data and check bytes and correcting the fewest
number of data and check bytes possible to reach the closest
set of consistent data and check bytes. As there can be only

10

15

20

25

30

35

40

45

50

55

60

65

40

one possible set of consistent data and check bytes within
distance

3]

(otherwise there would be two different sets of consistent data
and check bytes that were distance M or less apart, which
cannot happen), any combination of up to

7]

SDCs is guarantees to be correctable (assuming that

7]

SDCs is an acceptable upper bound on the maximum number
of SDCs that may be present).

Method 1200 of FIG. 12 provides a technique of consis-
tency checking or pure error detection. Method 1300 of FIG.
13 expands upon this to incorporate a certain amount of error
correction (at the expense of giving up a certain amount of
error detection). Both methods are guaranteed to work given
certain underlying assumptions (especially the maximum
number of SDCs that may be present). Given a sufficient
value for M, method 1200 will generally detect any number of
random SDCs. As discussed earlier, random SDCs initially
convert consistent data and check bytes into inconsistent data
and check bytes, thus increasing their consistency distance.
This consistency distance continues to grow and approaches
or equals M as more random SDCs are introduced. Briefly, a
random SDC is only going to be consistent with a given set of
N bytes 1/256 of the time, for byte-size entries, and only
1/65,536 of the time for two-byte entries. That is, random
SDCs likely make consistent data (or nearly consistent data)
less consistent. This effect compounds with each random
SDC, but is tempered somewhat by larger values of N and M
(since this introduces more possible subsets to check for
consistency, thus increasing the chance that one such consis-
tent subset will be found).

Accordingly, the principle of detecting virtually any num-
ber of random SDCs can be extended somewhat into the
notion of correcting more SDCs than

H

While the distance limits discussed above (especially in
method 1300) provide guaranteed results, check bytes can be
used to extend error correction conceivably as far as M-1
errors, as will now be explained with reference to FIG. 14.

FIG. 14 illustrates an exemplary method 1400 for correct-
ing errors according to an embodiment of the present inven-
tion.

Method 1400 increases or maximizes the chances of cor-
recting data and check bytes with random SDCs when com-
pared to, for example, method 1300 above. This correction
capability comes at the expense of reducing or minimizing
detection of SDCs, in that detection only takes place at the

US 9,258,014 B2

41

consistency distance, and then only when more than one
solution presents itself. Method 1400 also determines the
consistency distance of a set of data and check bytes.

Referring to FIG. 14, at step 1410, the number of errors (or
consistency distance) C is initialized to 0, and a consistency
check is made of the N+M bytes (using, for example, the
consistency checking method 1200 of FIG. 12). If the data
and check bytes are consistent, then processing proceeds to
step 1420, and no SDCs are detected (i.e., the consistency
distance C is 0). Otherwise, at least one SDC is detected, so
processing proceeds to step 1430, where an attempt is made to
correct the SDCs. In step 1430, the number of errors C is
incremented by 1. Next, in step 1440, every subset of size
N+M-C data and check bytes is tested for consistency. If
none is found, the processing proceeds to step 1450, where it
is determined that more than C SDCs have been detected.
Accordingly, steps 1430 and 1440 are repeated (this time on
smaller subsets of data and check bytes, i.e., larger values of
the consistency distance C).

Otherwise, if in step 1440, a single consistent subset is
found, then processing proceeds to step 1460, and that con-
sistent subset is used to correct the C SDCs. Finally, if in step
1440, more than one consistent subset is found, then process-
ing proceeds to step 1470, where it is determined that C SDCs
have been detected, but correction is not possible (numerous
solutions). At the conclusion of method 1400, C will be set to
the consistency distance. Method 1400 is thus also a tech-
nique of determining the consistency distance.

Several shortcuts are possible in method 1400. For
example, in step 1410, C can be initialized to a larger value to
cut down the searching of larger subsets in step 1440. It
should be noted though that C may no longer represent the
consistency distance in such a case. It should also be noted
that if C is initialized to a value larger than

4

results may be unpredictable (for instance, multiple errors
may be detected in place of identifying a unique set of cor-
rections at the consistency distance). See, however, method
1500 in FIG. 15 below. In addition, in step 1440, the check for
multiple consistent subsets can be bypassed if

(that is, processing can proceed directly to step 1460 once any
consistent subset is found). If

c>3]

in step 1440, then processing can go to step 1470 as soon as a
second consistent subset is found. Further, in step 1430, once
C=M, processing can proceed directly to step 1470, as the
largest consistency distance M has already been determined,
to which there are numerous possible sets of corrections.
Depending on the data, method 1400 can correct as many
as M-1 SDCs. As a simple case, consider N=2 and M=3. If
two random SDCs are injected into a set of 5=2+3 data and

10

15

20

25

30

35

40

45

50

55

60

65

42

check bytes, they can be detected by method 1200 or method
1300. However, there is no guarantee that they can be cor-
rected, since

possible subsets of three bytes to check for consistency, and
one is guaranteed to be consistent (namely, the subset that
does not include either of the two SDCs), that leaves 9 pos-
sible subsets that may also be consistent. Roughly speaking,
there is a 1 in 256 chance that any one of these subsets is
consistent, given random SDCs. Thus, about 96.5% of the
time, i.e.,

) (255]9
“\256)°

these 9 subsets will all be inconsistent, and method 1400 will
be able to correct the two errors.

FIG. 15 illustrates an exemplary method 1500 for correct-
ing errors according to another embodiment of the present
invention.

Method 1500 is similar to method 1400 above. However,
instead of starting the search for a consistent set of data and
check bytes from the initial set of data and check bytes and
fanning outward (as in method 1400), method 1500 starts
searching from the maximum detectable consistency distance
(i.e., M) and collapsing inward. As in method 1400, this
correction capability comes at the expense of reducing or
minimizing detection of SDCs, in that detection only takes
place at the consistency distance, and then only when more
than one solution presents itself. Like method 1400, method
1500 also determines the consistency distance of a set of data
and check bytes.

Referring to FIG. 15, at step 1510, the number of errors (or
consistency distance) C is initialized to M, representing the
maximum number of detectable SDCs. While the main loop
of method 1500 (i.e., steps 1530-1550) could be entered at
this point, when the N+M data and check bytes are already
consistent, this would lead to the unnecessary consistency
checking of many subsets of more than N data and check
bytes. Accordingly, as with method 1400, an initial consis-
tency check is made of the N+M bytes (using, for example,
the consistency checking method 1200 of FIG. 12). If all
N+M data and check bytes are consistent, then processing
proceeds to step 1520, and no SDCs are detected (i.e., the
consistency distance is 0, so C should be set to 0 if C is
returning the consistency distance). This check thus bypasses
the processing of the main loop (steps 1530-1550) for the
straightforward case of all N+M bytes being consistent.

On the other hand, if in step 1510, not all N+M data and
check bytes are consistent, then at least one SDC is detected,
s0 processing proceeds to step 1530, where an attempt is
made to correct the SDCs. In step 1530, the number of (cor-
rectable) errors C is decremented by 1. Thus, on the first
iteration of the main loop (steps 1530-1550), C=M-1, repre-

US 9,258,014 B2

43

senting the maximum number of correctable SDCs. Next, in
step 1540, every subset of size N+M-C data and check bytes
is tested for consistency. If more than one are found, the
processing proceeds to step 1550, where it is determined that
at most C SDCs have been detected. Accordingly, steps 1530
and 1540 are repeated (this time on larger subsets of data and
check bytes, i.e., smaller values of the consistency distance
O).

Otherwise, if in step 1540, a single consistent subset is
found, then processing proceeds to step 1560, and that con-
sistent subset is used to correct the C SDCs. Finally, if in step
1540, no consistent subset is found, then processing proceeds
to step 1570, where it is determined that C+1 SDCs have been
detected, but correction is not possible (numerous solutions).
IfCis returning the consistency distance, then C should be set
to C+1 in this case.

In practice, in step 1540, it may not be necessary to test
every subset of size N+M-C data and check bytes for consis-
tency. Once two such subsets have been found, processing can
go directly to step 1550. This speeds up the processing for
step 1540 when there are few SDCs in the data and check
bytes, as there will be numerous consistent subsets in such a
case, which hastens the time it takes to find any two such
subsets.

While larger values of M and N may decrease the likeli-
hood of correcting M—-1 SDCs (since they introduce more
subsets to check), this can be offset in one (or more) of several
ways. For example, using two-byte (or larger) entries greatly
reduces the likelihood of random SDCs producing consistent
subsets. With two-byte entries, when correcting M-1 random
SDCs, there is only a 1 in 65,536 chance that a subset with
SDCs will be consistent. Increasing the element size also
improves the encryption capability, as it increases the number
of possible check rows in the check matrix, and it grows the
size of each factor in the check matrix (making it that much
harder to decrypt). As another example, correcting fewer
SDCs (than M-1), such as M-2 or M-3, yet still more than

3}

significantly increases the chance of success because it
becomes increasingly less likely that such subsets will be
consistent. This is because, while with M—-1 SDCs, the subset
has to randomly match one byte to be consistent (a 1 in 256
chance), it has to match two bytes (1 in 65,536) or three bytes
(1in 16,777,216) to be consistent when correcting M-2 errors
or M-3 errors, respectively. As with RAID storage, then,
increasing the number of check bytes (i.e., increasing M) may
be a sure way of securing more data integrity in the face of
random SDCs.

The decisions of how many (internal) check blocks to use,
ofhow large to make the elements, and of how many errors to
be able to detect versus how many to be able to correct are
design tradeoffs and may depend on system design features
(such as available system resources and reliability, or whether
there is another way to recover the corrupted data, etc.)
Data Compression and Decompression

As discussed briefly earlier, the same techniques (such as
methods 1300, 1400, and 1500) used for error correction can
also be used to compress the data bytes in a cache. The basic
idea is to identify sets of data bytes that are either the same or
very similar, and store such sets of data bytes only once,
relying on the corresponding check bytes (which are stored

10

15

20

25

30

35

40

45

50

55

60

65

44

regardless) to recover the correct data bytes from a similar set
of data bytes through error correction as discussed above.

FIG. 16 illustrates an exemplary method 1600 of com-
pressing data according to an embodiment of the present
invention. It is assumed that a cache includes sets of data and
check bytes as defined above, with the data bytes being com-
pressed.

Referring to FIG. 16, method 1600 begins at step 1610,
where m sets of data and check bytes are stored in the cache.
These can be thought of as m sets of data bytes D, D, .. .,
D,, and a corresponding m sets of check bytes C,,C,,...,C,,.
All m sets of check bytes C,, C,, . . ., C,, are stored in the
cache. However, only n sets of databytes E|, E,, ..., E, are
stored in the cache, where nsm and {E,,E,, ..., E }={D,,
D,,...,D,}. Each set of check bytes C,, C,, . .., C,, points
(i.e., directly points) to one of the sets of data bytes E|,
E,, , E,,. but it is not necessarily a one-to-one correspon-
dence. In fact, the more sharing that takes place (i.e., multiple
sets of check bytes pointing to the same set of data bytes), the
better the compression.

Bach set of check bytes C, is paired with a set of data bytes
E, in the cache, but the combination is not necessarily a
consistent set of data and check bytes (i.e., an uncompressed
pairing, where the corresponding data bytes D, are the same as
the data bytes E,). Rather, it can be an inconsistent set of data
and check bytes, but one that can be corrected to a consistent
set using, for example, the above methods 1300, 1400, or
1500 for error correction (i.e., a compressed pairing, where
the corresponding data bytes D, are different from the data
bytes E,, and an error correction operation is needed to restore
the desired data bytes D, from the stored data bytes E,). While
the type of pairing (uncompressed or compressed) can be
detected by determining if the data bytes B, and check bytes C,
are consistent, to save computation, the type of pairing (un-
compressed or compressed) can also be stored with the check
bytes C, and the pointer to the data bytes E,.

In step 1620, a new set of data bytes D, | is to be stored in
the cache, i.e., become the (m+1)th set of data and check bytes
in the cache. The corresponding check bytes C,,,, are com-
puted and stored in the cache.

In step 1630, D,,., is compared against each of E,,
E,, ..., E,, and the E, having the smallest Hamming distance
to D,,,, (i.e., the set of data bytes that is closest to D, , ;) is
chosen. If there are multiple such closest sets of data bytes,
then E, can represent any one of them. In other embodiments,
different criteria can be used to choose such a representative
E,.

In step 1640, it is determined whether it will suffice to use
E,tostore D, . Thatis, is E, close enoughto D,,, , thatE, can
be used to store D,,, , relying on the check bytes C,,,, to
correct any differing bytes between E, and D,,,,? In other
words, is the combination of data bytes E, and check bytes
C,,.1> even though it may represent an inconsistent set of data
and check bytes, nonetheless correctable to restore D,,,,?
One way of making this determination is to see if the Ham-
ming distance between E, and D,,,, is <some threshold dis-
tance S. For example, if

<[]

then it is guaranteed that the inconsistent set of data and check
bytes E,and C,,, , canbe corrected to the consistent set of data

US 9,258,014 B2

45

m+1°

and check bytes D,,, , and C
smaller than

S may also be chosen to be

kil

for example, it some amount of error detection and/or correc-
tion is desired with the compression.

Instep 1650, if the Hamming distance betweenE, and D, ,
is <8, then the data bytes D, ; do not need to be stored in the
cache. Instead, the check bytes C,,, , are pointed to E; (and
error correction logic can beused to recreate D, , from E, and
C,...)- This improves the compression of the cache. IfE, and
D,,,, are the same (i.e., Hamming distance 0), the pairing is
uncompressed (that is, no decompression needed). Other-
wise, the pairing is compressed, and an error correction
operation (that is, one level of error correction) is needed to
restore (decompress) D,,,, from E,.

On the other hand, in step 1660, if the Hamming distance
betweenE,andD,,, , is>S, thenthe databytes D,,, | are stored
in the cache. That is, a new dataentry E,,, , is created, D,,,,, is
storedin E,, ,, and the check bytes C,,,, are pointedto E, , ;.
In this case, the pairing is uncompressed (no decompression
needed).

In method 1600,

. M
S is a threshold value < [TJ

Accordingly, the error correction can follow method 1300
above. For even better compression, however, an error cor-
rection technique closer to that of method 1400 or 1500 can be
employed, as described below with reference to FIG. 17. In
such a case, a fixed threshold S would not be provided. Rather,
the check bytes would be pointed to any set of data bytes from
which the resulting combination of (inconsistent) data bytes
and check bytes could be error corrected back to the desired
data bytes.

Asapossible enhancement to step 1630, a special check for
duplicates (i.e., a new set of data bytes D, , that matches an
existing set of data bytes in the cache) can be made by com-
paring the new set of check bytes C,,,, against the existing
sets of check bytes C,, C,, . . ., C,,. A mismatch guarantees
that the data bytes are different, while a match indicates a high
likelihood of a duplicate set of data bytes (by taking advan-
tage of the hashing properties of the erasure code encoding).
Accordingly, matches can then be specifically tested for
duplicates with the corresponding existing set of data bytes in
the cache (by comparing the existing set of data bytes with the
new set of data bytes), with appropriate pointers and indica-
tors (uncompressed or compressed) assigned to the check
bytes C,,,, if a duplicate is found. Since the number of check
bytes is likely to be smaller (or significantly smaller) than the
number of data bytes, this technique of duplicate checking
(i.e., comparing check bytes) can be considerably faster than
comparing all the data bytes when there is a high likelihood of
duplicates in the sets of data bytes.

In one exemplary embodiment, the check byte testing for
duplicates includes only testing a subset of the check bytes,
such as those corresponding to one check block (or check
disk). Further, the checking of a particular existing set of data
bytes (including its corresponding check bytes) can be

10

20

30

40

45

46

stopped as soon as a mismatch is found, as in such a case, the
existing set of data bytes cannot be the same as the new set of
data bytes.

FIG. 17 illustrates an exemplary method 1700 of com-
pressing data according to another embodiment of the present
invention.

Referring to FIG. 17, in method 1700, steps 1710 and 1720
are similar to steps 1610 and 1620, respectively, of method
1600 above. Accordingly, a detailed description of them will
not be repeated. In step 1730, however, E;, E,, . .., E, are
searched for any set of data bytes E, that are within a Ham-
ming distance M-1 of D,,,, and that can be combined with
check bytes C,,,, to produce a possibly inconsistent set of
data and check bytes but that can be “error corrected” (using
an approach similar to method 1400 or 1500) to the consistent
set of data bytes D,,,, and check bytes C,,,. If there are
multiple such sets of data bytes, then E, can represent any one
of'them (e.g., the first one found).

In step 1740, if there is such a set of data bytes E,, then the
databytes D,,, ; do not need to be stored in the cache. Instead,
the check bytes C,,, ; are pointed to E, (and error correction
logic can be used to recreate D,,,,, from E, and C,,,). This
further improves the compression of the cache compared to
method 1600.

Otherwise, in step 1750, if no such set of data bytes E, is
found, then the data bytes D, ; are stored in the cache. That
is,anewdataentryE, , iscreated, D, is storedinE, ,,,and
the check bytes C,,, | are pointedto E, , .

Method 1700 thus increases the compression in the cache
compared to method 1600. It should be noted that when in
step 1730, when searching for E, and using method 1400 or
1500 to check out E,, it suffices to search only the subsets of
data bytes (and not the subsets of data and check bytes), as the
check bytes C,,,, can be assumed to be correct in this com-
pression embodiment. That is, the check bytes C,, , | are being
used for compression, not actual error correction in the data.
This significantly cuts down on the search time and increases
the likelihood of finding a unique solution with method 1400
or 1500 above. In other embodiments, for example, where
error detection and correction as well as compression are
desired, this shortcut may not apply. In still other embodi-
ments, it may be desirable to select the E, (or one such E,)
having the least Hamming distance to D, ;.

As discussed briefly above, the compression technique can
be even further extended by considering already compressed
data in the cache. FIG. 18 illustrates an exemplary method
1800 of compressing data according to yet another embodi-
ment of the present invention.

Referring to FIG. 18, method 1800 differs from methods
1600 and 1700 above in that each of the sets of check bytes C,,
Cs, ..., C,, can also point to one of the other sets of check
bytes C,, C,, . . ., C,,_, instead of one of the data bytes E,,
E,,...,E,.Inthis sense, such a set of check bytes will be said
to indirectly point to one of the sets of data bytes E|,
E,, ..., E, (via one or more intermediate sets of check bytes
C,C,, ...,C,_). Steps 1810, 1820, 1830, and 1840 are
otherwise similar to steps 1710, 1720, 1730, and 1740 of
method 1700 above.

Inmethod 1800, when a set of check bytes, say C;, points to
another set of check bytes, say C,, it means that the set of data
bytes D, is close enough to the data bytes D, that any differing
bytes can be corrected (through error correction) by using the
check bytes C,. That is, the set of possibly inconsistent data
bytes and check bytes D, and C; is correctable to the consistent
set of data and check bytes D, and C,. This is similar to the
approach used in steps 1830 and 1840 for data bytes E,, only
some additional indirection may be introduced by having to

US 9,258,014 B2

47

produce (i.e., decompress) the data bytes D,. In other words,
the data bytes D, may have to be decompressed from one of
the sets of databytesE |, E,, .. ., E, or from another one of the
sets of databytes D, D,, ..., D,, (i.e., through another level
of error correction), depending on whether C, points to one of
E,,E,, ..., E, orto anotherone of C,C,,...,C,,.

Though the number of levels of error correction in method
1800 can be determined by following the data bytes’ pointers
and decompressing intermediate sets of data bytes, to save
such calculations, the number of levels of error correction can
be stored with the data bytes’ pointer (in place of the simple
indicator, uncompressed or compressed, used in methods
1600 and 1700). In this case, an uncompressed pairing can be
represented by the number 0, a compressed pairing as defined
in methods 1600 and 1700 can be represented by the number
1 (i.e., onelevel of error correction), and, in general, a number
1 can represent the number of levels of error correction needed
to restore the desired data bytes D, from those pointed to by
the check bytes C,. 1 thus represents the level of indirection, or
number of levels of error correction needed to decompress the
desired data bytes from the stored data bytes.

In further detail, in step 1850, if there is no such E, that can
be combined with C,, , to produce a possibly inconsistent set
of data and check bytes E, and C,,,, that can be corrected
through error correction to the consistent set of data and check
bytes D,,,, and C,,, |, then at least two levels of error correc-
tion are needed to pair the new data bytes D, , ; with the stored
data bytes. A search is made through the sets of data bytes D,
D,, ..., D,, (possibly requiring decompression of already
compressed data bytes) for such a set of data bytes D, that can
be combined with check bytes C,,,, to produce a possibly
inconsistent set of data and check bytes D, and C,,,,, that can
be error corrected to the consistent set of data and check bytes
D,,,; and C, . . This search can be performed several ways,
for example, finding the first such set of data bytes D,, or
starting the searching with the sets of data bytes that require
the fewest levels of error correction to decompress, or only
examining sets of data bytes whose number of levels of error
correction is below a maximum number (e.g., a predefined
maximum number) of error correction levels.

In step 1860, if there is such a set of data bytes D,, then the
databytes D,,, ; do not need to be stored in the cache. Instead,
the check bytes C,,,, are pointed to D, (and error correction
logic can be used to recreate D, , from D, and C,,,). This
further improves the compression of the cache compared to
methods 1600 and 1700. If D, and D,,,, are the same, then
C,,., can point to the same set of data bytes that C, points to
(and has the same number of levels of error correction).
Otherwise, an additional error correction operation (that is,
one more level of error correction) is added to restore (decom-
press) D, ,, from D,.

On the other hand, in step 1870, if no such set of data bytes
D, is found, then the data bytes D,,, ; are stored in the cache.
That is, a new data entry E, | is created, D, is stored in
E,.., and the check bytes C,,,, are pointed to E, ,,. In this
case, the pairing is uncompressed (no levels of error correc-
tion needed).

In one exemplary embodiment, the number of levels 1 of
error correction is maintained along with the pointer to the set
of data bytes. 1 can be used to used, for example, to make it
more efficient to find an existing set of data bytes in the cache
that is similar to a new set of data bytes to be added to the
cache. For example, searching for a candidate set of data
bytes can begin with those sets of data bytes having 1=0 (i.e.,
stored uncompressed in the cache without any error correc-
tion needed), then moving to 1=1 if no such set is found that is
close enough to the new set of data bytes, etc. For another

25

40

45

50

55

48

example, 1 can be limited to a maximum value (such as 2 or 3),
to limit the number of levels of error correction (decompres-
sion) needed to recreate the actual data.

In each of the compression methods 1600, 1700, and 1800
above, all of the check bytes are stored in the cache. However,
if the check bytes are being used for compression and not
error correction or detection, then it is not necessary to store
the check bytes of the data whose original data bytes are being
stored in the cache. An embodiment of this is described with
reference to FIG. 19.

FIG. 19 illustrates an exemplary method 1900 of com-
pressing data according to still yet another embodiment ofthe
present invention.

Method 1900 is fashioned after method 1800 above, with
steps 1910-1970 being similar to steps 1810-1870, respec-
tively. Accordingly, only differences between the two meth-
ods will be highlighted. In step 1910, only some of the sets of
check bytesC,,C,, ...,C,, are stored in the cache, namely F,,
F,, ..., F,_, that is, the m-n sets of check bytes that need
decompression (i.e., 1=1) with one of the sets of data bytes E,,
E,, ..., E, (and intermediate data sets when 1=2) to recover
their corresponding original data bytes. The corresponding n
sets of check bytes that do not need decompression with their
setsofdatabytesE, E,, ..., E, are reconstructable from their
corresponding data bytes. Accordingly, these sets of check
bytes are not stored in the cache. Thus, each of the in sets of
databytes D, D,, ..., D,, and corresponding check bytes C,,
C,,...,C,,1is stored either as one of the sets of data bytes E,,
E,....,E, (i.e.,, without compression) or as one of the sets of
check bytes F |, F,, ..., F, _, that needs decompression with
one of the sets of data bytes (and possible intermediate data
sets).

If in step 1930, it is determined that there is a set of data
bytes E, among the sets of data bytes E,, E,, . .., E, thatis
within Hamming distance M-1 of the new set of data bytes
D, suchthat the set of data bytes E, and the new set of check
bytes C,,,, can be error corrected to restore the data bytes
D,,. ., then in step 1940, the next set of check bytesF,,_,,, | is
set to the check bytes C,,,,, F,,_,.., is pointed to E, and the
databytes D,,, , are discarded. Otherwise, in step 1950, if it is
determined that there is a set of check bytes F, among the sets
ofcheckbytesF,,F,,...,F,, _,andthat corresponds to the set
of data bytes D, among the sets of data bytes D, D, ..., D,,,
such that D, is within Hamming distance M-1 of the new set
of data bytes D, , and the set of data bytes D, and the new set
of check bytes C,,, , can be error corrected to restore the data
bytes D,,,,, then in step 1960, the next set of check bytes
F, _,. 1s setto the check bytesC,,,,,F,, .., ispointedto F,,
and the data bytes D,,,, are discarded. Otherwise, in step
1970, the next set of data bytes E,,,; is set to the data bytes
D,,., and the check bytes C,,, , are discarded.

Exemplary Hardware or Software Logic

FIG. 20 illustrates exemplary hardware or software logic
for implementing the error detecting and correcting logic
according to an embodiment of the present invention.

FIG. 20 shows a process used to simultaneously correct
and validate a data stream including N data bytes (“Data”)
and M check bytes (“Check”), where C errors are attempting
to be corrected. FIG. 20 corresponds to the consistency
checking done in method 1200, and in particular to the con-
sistency checking done in steps 1340, 1440, and 1540 of
methods 1300, 1400, and 1500 respectively. In these steps, a
subset of size N+M-C (data and check) bytes is selected to
see if it is consistent. The other C bytes are assumed to be
SDCs and ignored in the testing of this subset. FIG. 20 shows
an example embodiment of the steps needed to perform this

US 9,258,014 B2

49

consistency checking on a single subset of size N+M-C
bytes. Accordingly, it may be necessary to perform the routine
in FIG. 20 as many as

(")

times for each value of C being tested (i.e., once for each
subset of size N+M-C bytes).

Let R represent the number of data bytes present in the
subset of size N+M-C data and check bytes. Further, let
Data(r) denote these R data bytes, and Data(c) denote the
other N-R data bytes (that are not part of the subset). This
leaves N+M-C-R check bytes in the subset. Split these
N+M-C-R check bytes into two groups, Check(r) and Check
(c), where Check(r) includes any N-R of these check bytes
(the precise ones are unimportant) and Check(c) includes the
remaining M—C of these check bytes. Check(r) is used with
Data(r) to regenerate Data(c), while Check(c) is used to verify
that this regeneration is correct.

In further detail, and referring to FIG. 20, Data 2010 pro-
vides Data(r) and Check 2020 provides Check(r) to Correc-
tion Logic 2030. Data(r) and Check(r) make up N bits of an
erasure code, so can be used to regenerate Data(c) in Correc-
tion Logic 2030 (using erasure code correction of known byte
locations). The regenerated Data(c) is then combined with
Data(r) to form Regenerated Data 2040, which represents the
corrected data stream if this particular subset contains con-
sistent data. To verify the consistency, Regenerated Data 2040
is input to Check Generator 2050 (which generates the check
data for this erasure code from the original data) to generate a
copy of Check(c). This copy of Check(c) is input to Com-
parator 2060 together with the stored copy of Check(c). Error
Indicator 2070 then indicates if the generated Check(c) is the
same as the stored Check(c), that is, Error Indicator indicates
if this subset of N+M-C data and check bytes is consistent. If
s0, then Regenerated Data 2040 represents the corrected data
bytes (from which any incorrect check bytes can be generated
using Check Generator 2050).

Thus, separating check bytes into two types, namely Check
(r) for regenerating missing or presumed incorrect data bytes
Data(c), and Check(c) for checking the correctness of the
resulting data byte regeneration provides useful features. For
example, on a system without SDCs, both the original data
and the reconstructed data can be validated as correct. Fur-
ther, on a system with multiple SDCs, the SDCs can be
detected and different combinations of data and check bytes
can be tested until a correct (i.e., consistent) combination is
found, resulting in the ability to correct up to M-1 SDCs in
the process.

FIG. 21 illustrates an exemplary system 2100 for imple-
menting software error-correcting code (ECC) protection or
compression (such as in methods 1200-1900) of original data
using ECC data in a cache 2140 (for example, a level in the
memory or storage hierarchy, such as a RAID cache) accord-
ing to an embodiment of the present invention.

The system 2100 (for example, a computer or computing
system) includes a computer processing core 2110 (which
can include a multi-core processor) for executing computer
instructions and accessing data from a main memory 2120
(such as a random access memory), and a non-volatile storage
medium 2130 (such as a disk drive) for storing the computer
instructions. The processing core 2110, the storage medium
2130, and the computer instructions are configured to imple-
ment the software ECC protection or compression of the

40

45

50

50

original data using the ECC data in the cache 2140 as
described, for example, in the above methods 1200-1900.

The software ECC protection or compression includes a
data matrix 2150 for holding the original data in the cache
2140, a check matrix 2160 for holding the ECC data in the
first memory, and an encoding matrix 2170 for holding Galois
Field multiplication factors in the main memory 2120. The
multiplication factors are for encoding the original data into
the ECC data (an example embodiment of which is described
in detail in the Benefit Application and included above). The
software ECC protection or compression also includes a
thread 2180 for executing on the processing core 2110. The
thread 2180 includes a Galois Field multiplier for multiplying
entries of the data matrix 2150 by an entry of the encoding
matrix 2170, and a sequencer for ordering operations through
the data matrix 2150 and the encoding matrix 2170 using the
Galois Field multiplier to generate the ECC data (further
details of which are provided in the Benefit Application and
included above).

The Galois Field multiplier may be a parallel multiplier for
concurrently multiplying the entries of the data matrix 2150
by the entry of the encoding matrix 2170 (as described further
in the Benefit Application and included above). The thread
2180 may also include a plurality of threads for executing on
a multi-core processing unit. To this end, the software ECC
protection or compression may further include a scheduler for
generating the ECC data by dividing the data matrix 2150 into
a plurality of data matrices, dividing the check matrix 2160
into a plurality of check matrices, assigning corresponding
ones of the data matrices and the check matrices to the
threads, and assigning the threads to the processing cores to
concurrently generate portions of the ECC data correspond-
ing to the check matrices from respective ones of the data
matrices. Further details of the scheduler can be found in the
Benefit Application that has been included above.

While the above description contains many specific
embodiments of the invention, these should not be construed
as limitations on the scope of the invention, but rather as
examples of specific embodiments thereof. Accordingly, the
scope of the invention should be determined not by the
embodiments illustrated, but by the appended claims and
their equivalents.

What is claimed is:

1. A system for software error-correcting code (ECC) pro-
tection or compression of original data using ECC data in a
first memory, comprising:

a processing core for executing computer instructions and
accessing data from a main memory, the processing core
comprising at least 16 data registers, each of the data
registers comprising at least 16 bytes; and

a non-volatile storage medium for storing the computer
instructions,

wherein the processing core, the non-volatile storage
medium, and the computer instructions are configured to
implement the software ECC protection or compression
of the original data using the ECC data in the first
memory, the software ECC protection or compression
comprising:

a data matrix for holding the original data in the first
memory;

a check matrix for holding the ECC data in the first
memory;

an encoding matrix for holding first factors in the main
memory, the first factors being for encoding the origi-
nal data into the ECC data; and

a thread for executing on the processing core and com-
prising:

US 9,258,014 B2

51

a Galois Field multiplier for multiplying entries of the
data matrix by an entry of the encoding matrix; and

a sequencer for ordering operations through the data
matrix and the encoding matrix using the Galois
Field multiplier to generate the ECC data.

2. The system of claim 1, wherein the sequencer is config-
ured to access each entry of the data matrix from the main
memory at most once while generating the ECC data.

3. The system of claim 2, wherein the Galois Field multi-
plier comprises two lookup tables for doing concurrent mul-
tiplication of 4-bit quantities across at least 16 byte-sized
entries using the PSHUFB (Packed Shuffle Bytes) or equiva-
lent instruction.

4. The system of claim 3, wherein the sequencer is further
configured to generate the ECC data on write operations of
the original data to the first memory.

5. The system of claim 2, wherein the sequencer is further
configured to generate the ECC data on write operations of
the original data to the first memory.

6. The system of claim 1, wherein the Galois Field multi-
plier comprises two lookup tables for doing concurrent mul-
tiplication of 4-bit quantities across at least 16 byte-sized
entries using the PSHUFB (Packed Shuffle Bytes) or equiva-
lent instruction.

7. The system of claim 6, wherein the sequencer is config-
ured to generate the ECC data on write operations of the
original data to the first memory.

8. The system of claim 1, wherein the sequencer is config-
ured to generate the ECC data on write operations of the
original data to the first memory.

9. A method of error-correcting code (ECC) protection or
compression of original data with ECC data in a first memory
using a computing system comprising a non-volatile storage
medium for storing computer instructions, and a processing
core for executing the computer instructions and accessing
data from a main memory, the processing core comprising at
least 16 data registers, each of the data registers comprising at
least 16 bytes, the method comprising:

accessing the computer instructions from the non-volatile

storage medium;

executing the computer instructions on the processing

core;

arranging the original data as a data matrix in the first

memory;

arranging the ECC data as a check matrix in the first

memory;

arranging first factors as an encoding matrix in the main

memory; and

10

25

30

40

45

52

encoding the original data into the ECC data using the first

factors, comprising:

multiplying entries of the data matrix by an entry of the
encoding matrix using Galois Field multiplication;
and

ordering operations through the data matrix and the
encoding matrix using the Galois Field multiplication
to generate the ECC data.

10. The method of claim 9, wherein the ordering of the
operations through the data matrix and the encoding matrix
using the Galois Field multiplication to generate the ECC
data comprises accessing each entry of the data matrix from
the main memory at most once while generating the ECC
data.

11. The method of claim 10, wherein the multiplying of the
entries of the data matrix by the entry of the encoding matrix
using Galois Field multiplication comprises using two lookup
tables for doing concurrent multiplication of 4-bit quantities
across at least 16 byte-sized entries using the PSHUFB
(Packed Shuffle Bytes) or equivalent instruction.

12. The method of claim 11, wherein the ordering of the
operations through the data matrix and the encoding matrix
using the Galois Field multiplication to generate the ECC
data further comprises generating the ECC data on write
operations of the original data to the first memory.

13. The method of claim 10, wherein the ordering of the
operations through the data matrix and the encoding matrix
using the Galois Field multiplication to generate the ECC
data further comprises generating the ECC data on write
operations of the original data to the first memory.

14. The method of claim 9, wherein the multiplying of the
entries of the data matrix by the entry of the encoding matrix
using Galois Field multiplication comprises using two lookup
tables for doing concurrent multiplication of 4-bit quantities
across at least 16 byte-sized entries using the PSHUFB
(Packed Shuffle Bytes) or equivalent instruction.

15. The method of claim 14, wherein the ordering of the
operations through the data matrix and the encoding matrix
using the Galois Field multiplication to generate the ECC
data comprises generating the ECC data on write operations
of the original data to the first memory.

16. The method of claim 9, wherein the ordering of the
operations through the data matrix and the encoding matrix
using the Galois Field multiplication to generate the ECC
data comprises generating the ECC data on write operations
of the original data to the first memory.

#* #* #* #* #*

